swat river
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Muhammad Dawood ◽  
Atta-ur Rahman ◽  
Shakeel Mahmood ◽  
Ghani Rahman ◽  
Shah Nazir

2020 ◽  
Vol 158 ◽  
pp. 106017 ◽  
Author(s):  
Sangam Shrestha ◽  
Hira Sattar ◽  
M. Shahzad Khattak ◽  
Guoqiang Wang ◽  
Muhammad Babur

2020 ◽  
Vol 27 (31) ◽  
pp. 38545-38558 ◽  
Author(s):  
Shah Jehan ◽  
Ihsan Ullah ◽  
Sardar Khan ◽  
Said Muhammad ◽  
Seema Anjum Khattak ◽  
...  

Abstract This study evaluates the characteristics of water along the Swat River, Northern Pakistan. For this purpose, water samples (n = 30) were collected and analyzed for physicochemical parameters including heavy metals (HM). The mean concentrations of physicochemical parameters and HM were within the drinking water guideline values set by the World Health Organization (WHO 2011) except 34%, 60%, and 56% of copper (Cu), nickel (Ni), and lead (Pb), respectively. Pollution sources were identified by various multivariate statistical techniques including correlation analysis (CA) and principal component analysis (PCA) indicating different origins both naturally and anthropogenically. Results of the water quality index (WQI) ranged from 13.58 to 209 with an average value of 77 suggesting poor water quality for drinking and domestic purposes. The poor water quality was mainly related to high sodium (alkalinity) and salinity hazards showing > 27% and 20% water samples have poor alkalinity and salinity hazards, respectively. Hazard quotient (HQ) and hazard index (HI) were used to determine the health risk of HM in the study area. For water-related health risk, HQingestion, HQdermal, and HI values were > 1, indicating noncarcinogenic health risk (NCR) posed by these HM to the exposed population.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Muhammad Sibtain ◽  
Xianshan Li ◽  
Ghulam Nabi ◽  
Muhammad Imran Azam ◽  
Hassan Bashir

Precise and reliable hydrological runoff prediction plays a significant role in the optimal management of hydropower resources. Nevertheless, the hydrological runoff practically possesses a nonlinear dynamics, and constructing appropriate runoff prediction models to deal with the nonlinearity is a challenging task. To overcome this difficulty, this paper proposes a three-stage novel hybrid model, namely, CVS (CEEMDAN-VMD-SVM), by coupling the support vector machine (SVM) with a two-stage signal decomposition methodology, combining complete ensemble empirical decomposition with additive noise (CEEMDAN) and variational mode decomposition (VMD), to obtain inclusive information of the runoff time series. Hydrological runoff data of the Swat River, Pakistan, from 1961 to 2015 were taken for prediction. CEEMDAN decomposes the runoff time series into subcomponents, and VMD performs further decomposition of the high-frequency component obtained after CEEMDAN decomposition to improve the prediction activity. Afterward, the SVM algorithm was applied to the decomposed subcomponents for the prediction purpose. Finally, four statistical indices are utilized to measure the performance of the CVS model compared with other hybrid models including CEEMDAN-VMD-MLP (multilayer perceptron), CEEMDAN-SVM, VMD-SVM, CEEMDAN-MLP, VMD-MLP, SVM, and MLP. The CVS model performs better during the training period by reducing RMSE by 71.28% and 40.06% compared with MLP and CEEDMAD-VMD-SVM models, respectively. However, during the testing period, the error reductions include RMSE by 68.37% and 35.33% compared with MLP and CEEDMAD-VMD-SVM models, respectively. The results highlight that the CVS model outperforms other models in terms of accuracy and error reduction. The research also highlights the superiority of other hybrid models over standalone in predicting the hydrological runoff. Therefore, the proposed hybrid model is applicable for the nonlinear features of runoff time series with feasibility for future planning and management of water resources.


Sign in / Sign up

Export Citation Format

Share Document