receptor desensitisation
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

2014 ◽  
Vol 103 (suppl 1) ◽  
pp. S113.1-S113
Author(s):  
J Patel ◽  
E Mcneill ◽  
G Douglas ◽  
A Hale ◽  
J De Bono ◽  
...  

Heart ◽  
2014 ◽  
Vol 100 (Suppl 3) ◽  
pp. A124.1-A124
Author(s):  
Jyoti Patel ◽  
Eileen McNeill ◽  
Gillian Douglas ◽  
Ashley Hale ◽  
Joseph de Bono ◽  
...  

2012 ◽  
Vol 107 (04) ◽  
pp. 735-748 ◽  
Author(s):  
Mathieu Schaff ◽  
Nicolas Receveur ◽  
Catherine Bourdon ◽  
Philippe Ohlmann ◽  
François Lanza ◽  
...  

Summaryβ-arrestin-1 (β-arr1) and β-arrestin-2 (β-arr2) are cytosolic proteins well-known to participate in G protein-coupled receptor desensitisation and signalling. We used genetically-inactivated mice to evaluate the role of β-arr1 or β-arr2 in platelet function, P2Y receptor desensitisation, haemostasis and thrombosis. Platelet aggregation, soluble fibrinogen binding and P-selectin exposure induced by various agonists were near normal in β-arr1−/− and β-arr2−/− platelets. In addition, deficiency in β-arr1 or β-arr2 was not critical for P2Y receptors desensitisation. A functional redundancy between β-arr1 and β-arr2 may explain these unchanged platelet responses. Interestingly, β-arr1−/− but not β-arr2−/− mice were protected against laser- and FeCl3-induced thrombosis. The tail bleeding times, number of rebleeds and volume of blood loss were unchanged in β-arr1−/− and β-arr2−/− mice, suggesting no defect in haemostasis. β-arr1−/− platelet activation upon adhesion to immobilised fibrinogen was inhibited, as attested by a 37 ± 5% (n = 3, p<0.0001) decrease in filopodia extension, suggesting defective signalling through integrin αIIbβ3. β-arr1 appeared to be located downstream of Src family kinases and to regulate αIIbβ3 signalling by increasing Akt phosphorylation. Overall, this study supports a role for β-arr1 in promoting thrombus formation, in part through its participation in αIIbβ3 signalling, and no role of β-arr1 and β-arr2 in agonist-induced platelet activation and P2Y receptors desensitisation.


2005 ◽  
Vol 48 (1) ◽  
pp. 134-150 ◽  
Author(s):  
Pilar Sánchez-Blázquez ◽  
María Rodríguez-Muñoz ◽  
Carlos Montero ◽  
Javier Garzón

2002 ◽  
Vol 173 (1) ◽  
pp. 1-11 ◽  
Author(s):  
CA McArdle ◽  
J Franklin ◽  
L Green ◽  
JN Hislop

Sustained stimulation of G-protein-coupled receptors (GPCRs) typically causes receptor desensitisation, which is mediated by phosphorylation, often within the C-terminal tail of the receptor. The consequent binding of beta-arrestin not only prevents the receptor from activating its G protein (causing desensitisation), but can also target it for internalisation via clathrin-coated vesicles and can mediate signalling to proteins regulating endocytosis and mitogen-activated protein kinase (MAPK) cascades. GnRH acts via phospholipase C (PLC)-coupled GPCRs on pituitary gonadotrophs to stimulate a Ca(2+)-mediated increase in gonadotrophin secretion. The type I GnRH receptors (GnRH-Rs), found only in mammals, are unique in that they lack C-terminal tails and apparently do not undergo agonist-induced phosphorylation or bind beta-arrestin; they are therefore resistant to receptor desensitisation and internalise slowly. In contrast, the type II GnRH-Rs, found in numerous vertebrates, possess such tails and show rapid desensitisation and internalisation, with concomitant receptor phosphorylation (within the C-terminal tails) or binding of beta-arrestin, or both. The association with beta-arrestin may also be important for regulation of dynamin, a GTPase that controls separation of endosomes from the plasma membrane. Using recombinant adenovirus to express GnRH-Rs in Hela cells conditionally expressing a dominant negative mutant of dynamin (K44A), we have found that blockade of dynamin-dependent endocytosis inhibits internalisation of type II (xenopus) GnRH-Rs but not type I (human) GnRH-Rs. In these cells, blockade of dynamin-dependent internalisation also inhibited GnRH-R-mediated MAPK activation, but this effect was not receptor specific and therefore not dependent upon dynamin-regulated GnRH-R internalisation. Although type I GnRH-Rs do not desensitise, sustained activation of GnRH-Rs causes desensitisation of gonadotrophin secretion, and we have found that GnRH can cause down-regulation of inositol (1,4,5) trisphosphate receptors and desensitisation of Ca(2+) mobilisation in pituitary cells. The atypical resistance of the GnRH-R to desensitisation may underlie its atypical efficiency at provoking this downstream adaptive response. GnRH-Rs are also expressed in several extrapituitary sites, and these may mediate direct inhibition of proliferation of hormone-dependent cancer cells. Infection with type I GnRH-R-expressing adenovirus facilitated expression of high-affinity, PLC-coupled GnRH-R in mammary and prostate cancer cells, and these mediated pronounced antiproliferative effects of receptor agonists. No such effect was seen in cells transfected with a type II GnRH-R, implying that it is mediated most efficiently by a non-desensitising receptor. Thus it appears that the mammalian GnRH-Rs have undergone a period of rapidly accelerated molecular evolution that is of functional relevance to GnRH-Rs in pituitary and extrapituitary sites.


Sign in / Sign up

Export Citation Format

Share Document