scholarly journals Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors

2002 ◽  
Vol 173 (1) ◽  
pp. 1-11 ◽  
Author(s):  
CA McArdle ◽  
J Franklin ◽  
L Green ◽  
JN Hislop

Sustained stimulation of G-protein-coupled receptors (GPCRs) typically causes receptor desensitisation, which is mediated by phosphorylation, often within the C-terminal tail of the receptor. The consequent binding of beta-arrestin not only prevents the receptor from activating its G protein (causing desensitisation), but can also target it for internalisation via clathrin-coated vesicles and can mediate signalling to proteins regulating endocytosis and mitogen-activated protein kinase (MAPK) cascades. GnRH acts via phospholipase C (PLC)-coupled GPCRs on pituitary gonadotrophs to stimulate a Ca(2+)-mediated increase in gonadotrophin secretion. The type I GnRH receptors (GnRH-Rs), found only in mammals, are unique in that they lack C-terminal tails and apparently do not undergo agonist-induced phosphorylation or bind beta-arrestin; they are therefore resistant to receptor desensitisation and internalise slowly. In contrast, the type II GnRH-Rs, found in numerous vertebrates, possess such tails and show rapid desensitisation and internalisation, with concomitant receptor phosphorylation (within the C-terminal tails) or binding of beta-arrestin, or both. The association with beta-arrestin may also be important for regulation of dynamin, a GTPase that controls separation of endosomes from the plasma membrane. Using recombinant adenovirus to express GnRH-Rs in Hela cells conditionally expressing a dominant negative mutant of dynamin (K44A), we have found that blockade of dynamin-dependent endocytosis inhibits internalisation of type II (xenopus) GnRH-Rs but not type I (human) GnRH-Rs. In these cells, blockade of dynamin-dependent internalisation also inhibited GnRH-R-mediated MAPK activation, but this effect was not receptor specific and therefore not dependent upon dynamin-regulated GnRH-R internalisation. Although type I GnRH-Rs do not desensitise, sustained activation of GnRH-Rs causes desensitisation of gonadotrophin secretion, and we have found that GnRH can cause down-regulation of inositol (1,4,5) trisphosphate receptors and desensitisation of Ca(2+) mobilisation in pituitary cells. The atypical resistance of the GnRH-R to desensitisation may underlie its atypical efficiency at provoking this downstream adaptive response. GnRH-Rs are also expressed in several extrapituitary sites, and these may mediate direct inhibition of proliferation of hormone-dependent cancer cells. Infection with type I GnRH-R-expressing adenovirus facilitated expression of high-affinity, PLC-coupled GnRH-R in mammary and prostate cancer cells, and these mediated pronounced antiproliferative effects of receptor agonists. No such effect was seen in cells transfected with a type II GnRH-R, implying that it is mediated most efficiently by a non-desensitising receptor. Thus it appears that the mammalian GnRH-Rs have undergone a period of rapidly accelerated molecular evolution that is of functional relevance to GnRH-Rs in pituitary and extrapituitary sites.

Author(s):  
Toshihiro Kobayashi ◽  
Hitomi Imachi ◽  
Kensaku Fukunaga ◽  
Jingya Lyu ◽  
Seisuke Sato ◽  
...  

Adiponectin (APN) is an adipokine that protects against diabetes and atherosclerosis. High-density lipoprotein (HDL) mediates reverse cholesterol transport, which also protects against atherosclerosis. In this process, the human homolog of the B class type I scavenger receptor (SR-BI/CLA-1) facilitates the cellular uptake of cholesterol from HDL. The level of circulating adiponectin is positively correlated with the serum level of HDL-cholesterol. In this study, we investigated whether HDL stimulates the gene expression of adiponectin through the Ca²+/calmodulin (CaM)-dependent protein kinase IV (CaMKIV) cascade. Adiponectin expression was examined using real-time PCR and western blot analysis in 3T3-L1 cells incubated with HDL. CaMKIV activity was assessed by detection of activation loop phosphorylation (at Thr196 residue), and the effect of the constitutively active form, CaMKIVc, on adiponectin promoter activity was investigated. Our results showed that HDL stimulated APN gene expression via hSR-BI/CLA-1. Furthermore, we explored the signaling pathways by which HDL stimulated APN expression in 3T3-L1 cells. The stimulation of APN gene expression by HDL appears to be mediated by CaMKK, as STO-609, a specific inhibitor of CaMKK2, prevents this effect. We revealed that CaMKIVc increased APN gene transcriptional activity, and the CaMKIV dominant negative mutant blocked the effect of HDL on APN promoter activity. Finally, knockdown of hSR-BI/CLA-1 also cancelled the effect of HDL on APN gene expression. These results suggest that HDL has important role to improve the function of adipocytes by activating hSR-BI/CLA-1 and CaMKK/CaMKIV pathway is conceivable as one of the signaling pathways of this activation mechanism.


2020 ◽  
Vol 318 (1) ◽  
pp. C215-C224 ◽  
Author(s):  
Joaquin M. Muriel ◽  
Andrea O’Neill ◽  
Jaclyn P. Kerr ◽  
Emily Kleinhans-Welte ◽  
Richard M. Lovering ◽  
...  

Intermediate filaments (IFs) contribute to force transmission, cellular integrity, and signaling in skeletal muscle. We previously identified keratin 19 (Krt19) as a muscle IF protein. We now report the presence of a second type I muscle keratin, Krt18. Krt18 mRNA levels are about half those for Krt19 and only 1:1,000th those for desmin; the protein was nevertheless detectable in immunoblots. Muscle function, measured by maximal isometric force in vivo, was moderately compromised in Krt18-knockout ( Krt18-KO) or dominant-negative mutant mice ( Krt18 DN), but structure was unaltered. Exogenous Krt18, introduced by electroporation, was localized in a reticulum around the contractile apparatus in wild-type muscle and to a lesser extent in muscle lacking Krt19 or desmin or both proteins. Exogenous Krt19, which was either reticular or aggregated in controls, became reticular more frequently in Krt19-null than in Krt18-null, desmin-null, or double-null muscles. Desmin was assembled into the reticulum normally in all genotypes. Notably, all three IF proteins appeared in overlapping reticular structures. We assessed the effect of Krt18 on susceptibility to injury in vivo by electroporating siRNA into tibialis anterior (TA) muscles of control and Krt19-KO mice and testing 2 wk later. Results showed a 33% strength deficit (reduction in maximal torque after injury) compared with siRNA-treated controls. Conversely, electroporation of siRNA to Krt19 into Krt18-null TA yielded a strength deficit of 18% after injury compared with controls. Our results suggest that Krt18 plays a complementary role to Krt19 in skeletal muscle in both assembling keratin-based filaments and transducing contractile force.


2000 ◽  
Vol 167 (3) ◽  
pp. 505-515 ◽  
Author(s):  
A Baur ◽  
K Bauer ◽  
H Jarry ◽  
J Kohrle

Cytokines are locally produced in the anterior pituitary and act through para-/autocrine mechanisms to modulate cell growth and hormone production. 5'-Deiodinases type I (D1) and type II (D2) are also expressed in the anterior pituitary and play an integrative role in the regulation of hormone production and pituitary feedback. D1 activity is known to be regulated by proinflammatory cytokines in liver and thyroid. Therefore, we examined the effects of IL-1 beta, IL-6 and TNF alpha on 5'-deiodinase activities in reaggregates of rat anterior pituitaries and rat somatomammotroph GH3 cells cultured alone, or in a bicameral culture system together with the murine folliculo-stellate (FS) cell line TtT/Gf. In reaggregate cultures of rat anterior pituitaries IL-1 beta stimulated D1 and D2 dose-dependently and D2 activity was increased by TNF alpha. When GH3 cells were cocultured with TtT/Gf cells, D2 activities were 2.3-fold lower than in GH3 cells cultured alone. TNF alpha (50 ng/ml) and IL-6 (100 U/ml) stimulated D2 in GH3 cells when the cells were cultured alone and treated with these cytokines for 24 h. When TtT/Gf cells in the coculture model were treated with IL-1 beta, TNF alpha and IL-6, no effect on D1 or D2 activities in GH3 cells was observed. In male, adult rats a single LPS injection (i.p.) stimulated D2 and D1 activities in the anterior pituitary, and decreased liver D1 activities and serum TSH levels. In vitro, LPS stimulation of the coculture model of GH3 and FS cells also increased D1 activity. Electrophoretic mobility shift assays (EMSAs) revealed that IL-1 beta and TNF alpha activate the transcription factor NF kappa B in reaggregates of rat anterior pituitaries and in TtT/Gf cells cultured alone or cocultured with GH3 cells. Taken together, these findings imply that in anterior pituitary cells 5'-deiodinase activities are stimulated by locally produced cytokines in a para-/autocrine manner but cell types other than FS cells seem to mediate some of the effects.


2019 ◽  
Vol 2 (9) ◽  
pp. 3854-3860 ◽  
Author(s):  
Xiao Cui ◽  
Jinfeng Zhang ◽  
Yingpeng Wan ◽  
Fang Fang ◽  
Rui Chen ◽  
...  

2001 ◽  
Vol 276 (50) ◽  
pp. 46707-46713 ◽  
Author(s):  
Neil A. Bhowmick ◽  
Roy Zent ◽  
Mayshan Ghiassi ◽  
Maureen McDonnell ◽  
Harold L. Moses

Transforming growth factor-β (TGF-β) can induce epithelial to mesenchymal transdifferentiation (EMT) in mammary epithelial cells. TGF-β-meditated EMT involves the stimulation of a number of signaling pathways by the sequential binding of the type II and type I serine/threonine kinase receptors, respectively. Integrins comprise a family of heterodimeric extracellular matrix receptors that mediate cell adhesion and intracellular signaling, hence making them crucial for EMT progression. In light of substantial evidence indicating TGF-β regulation of various β1integrins and their extracellular matrix ligands, we examined the cross-talk between the TGF-β and integrin signal transduction pathways. Using an inducible system for the expression of a cytoplasmically truncated dominant negative TGF-β type II receptor, we blocked TGF-β-mediated growth inhibition, transcriptional activation, and EMT progression. Dominant negative TGF-β type II receptor expression inhibited TGF-β signaling to the SMAD and AKT pathways, but did not block TGF-β-mediated p38MAPK activation. Interestingly, blocking integrin β1function inhibited TGF-β-mediated p38MAPK activation and EMT progression. Limiting p38MAPK activity through the expression of a dominant negative-p38MAPK also blocked TGF-β-mediated EMT. In summary, TGF-β-mediated p38MAPK activation is dependent on functional integrin β1, and p38MAPK activity is required but is not sufficient to induce EMT.


Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 6036-6045 ◽  
Author(s):  
David Romano ◽  
Morgane Pertuit ◽  
Ramahefarizo Rasolonjanahary ◽  
Jean-Vianney Barnier ◽  
Karine Magalon ◽  
...  

In pituitary cells, prolactin (PRL) synthesis and release are controlled by multiple transduction pathways. In the GH4C1 somatolactotroph cell line, we previously reported that MAPK ERK-1/2 are a point of convergence between the pathways involved in the PRL gene regulation. In the present study, we focused on the involvement of the phosphoinositide 3-kinase (PI3K)/Akt pathway in the MAPK ERK-1/2 regulation and PRL secretion in pituitary cells. Either specific pharmacological PI3K and Akt inhibitors (LY294002, Akt I, and phosphoinositide analog-6) or Akt dominant-negative mutant (K179M) enhanced ERK-1/2 phosphorylation in unstimulated GH4C1 cells. Under the same conditions, PI3K and Akt inhibition also both increased Raf-1 kinase activity and the levels of GTP-bound (active form) monomeric G protein Rap1, which suggests that a down-regulation of the ERK-1/2 cascade is induced by the PI3K/Akt signaling pathway in unstimulated cells. On the contrary, ERK-1/2 phosphorylation, Raf-1 activity, and Rap1 activation were almost completely blocked in IGF-I-stimulated cells previously subjected to PI3K or Akt inhibition. Although the PRL promoter was not affected by either PI3K/Akt inhibition or activation, PRL release increased in response to the pharmacological PI3K/Akt inhibitors in unstimulated GH4C1 and rat pituitary primary cells. The IGF-I-stimulated PRL secretion was diminished, on the contrary, by the pharmacological PI3K/Akt inhibitors. Taken together, these findings indicate that the PI3K/Akt pathway exerts dual regulatory effects on both the Rap1/Raf-1/ERK-1/2 cascade and PRL release in pituitary cells, i.e. negative effects in unstimulated cells and positive ones in IGF-I-stimulated cells.


1999 ◽  
Vol 13 (6) ◽  
pp. 866-878 ◽  
Author(s):  
Maria de Fatima M. Lazari ◽  
Xuebo Liu ◽  
Kazuto Nakamura ◽  
Jeffrey L. Benovic ◽  
Mario Ascoli

Abstract The experiments presented herein were designed to identify members of the G protein-coupled receptor kinase (GRK) family that participate in the agonist-induced phosphorylation and internalization of the rat FSH receptor (rFSHR). Western blots of human kidney 293 cells (the cell line used in transfection experiments) and MSC-1 cells (a cell line derived from Sertoli cells that displays many of the differentiated functions of their normal counterparts) reveal the presence of GRK2 and GRK6 in both cell lines as well as GRK4 in MSC-1 cells. Cotransfection of 293 cells with the rFSHR and GRK2, GRK4α, or GRK6 resulted in an increase in the agonist-induced phosphorylation of the rFSHR. Cotransfections of the rFSHR with GRKs or arrestin-3 enhanced the agonist-induced internalization of the rFHSR, and combinations of GRKs and arrestin-3 were more effective than the individual components. To characterize the involvement of endogenous GRKs on phosphorylation and internalization, we inhibited endogenous GRK2 by overexpression of a kinase-deficient mutant of GRK2 or Gαt, a scavenger of Gβγ. We also inhibited endogenous GRK6 by overexpression of a kinase-deficient mutant of GKR6. All three constructs were effective inhibitors of phosphorylation, but only the kinase-deficient mutant of GRK2 and Gαt inhibited internalization. The inhibition of internalization induced by these two constructs was less pronounced than that induced by a dominant-negative mutant of the nonvisual arrrestins, however. The finding that inhibitors of GRK2 and GRK6 impair phosphorylation, but only the inhibitors of GRK2 impair internalization, suggests that different GRKs have differential effects on receptor internalization.


1996 ◽  
Vol 74 (3) ◽  
pp. 299-314 ◽  
Author(s):  
Steven M. Kolodziejczyk ◽  
Brian K. Hall

The TGF-β superfamily includes a large number of related growth and differentiation factors expressed in virtually all phyla. Superfamily members bind to specific cell surface receptors that activate signal transduction mechanisms to elicit their effects. Candidate receptors fall into two primary groups, termed type I and type II receptors. Both types are serine/threonine kinases. Upon activation by the appropriate ligand, type I and type II receptors physically interact to form hetero-oligomers and subsequently activate intracellular signaling cascades, ultimately regulating gene transcription and expression. In addition, TGF-β binds to a third receptor class, type III, a membrane-anchored proteoglycan lacking the kinase activity typical of signal transducing molecules. Type III receptors appear to regulate ligand availability to type I and type II receptors. Although a number of transduction mechanisms may be available to TGF-β superfamily members, evidence gathered through the use of specific kinase and G-protein inhibitors and through assays measuring activation and levels of signaling intermediates suggests that at least one signaling pathway interacts with Ras and Raf proteins via a G-protein intermediate. Raf begins the cytoplasmic kinase cascade that leads to gene regulation. The myriad responses regulated by TGF-β superfamily members makes the understanding of signal transduction mechanisms utilized by these proteins of great interest to a wide range of biological disciplines.Key words: TGF-β superfamily, serine/threonine kinase receptors, G-proteins, Ras, cytoplasmic kinase cascade.


Sign in / Sign up

Export Citation Format

Share Document