Modification of Multi‐Component Building Blocks for Assembling Giant Chiral Lanthanide–Titanium Molecular Rings

2021 ◽  
Author(s):  
Ming-Hao Du ◽  
Su-Hui Xu ◽  
Guan-Jun Li ◽  
Han Xu ◽  
Yang Lin ◽  
...  
2022 ◽  
Author(s):  
Stephen Goldup ◽  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler

Abstract The term chiral was introduced by Lord Kelvin over a century ago to describe objects that are distinct from their own mirror image. Chirality is relevant in many scientific areas, but particularly chemistry because different mirror image forms of a molecule famously have different biological properties. Chirality typically arises in molecules due to a rigidly chiral arrangement of covalently bonded atoms. Less generally appreciated is that molecular chirality can arise when molecules are threaded through one another to create a mechanical bond. For example, when two molecular rings with chemically distinct faces are joined like links in a chain the resulting structure is chiral even when the rings themselves are not. We re-examined the symmetry properties of such mechanically axially chiral catenanes and in doing so identified a straightforward route to these molecules from simple building blocks. This also led to the discovery of a previously overlooked mechanical stereogenic unit that can arise when such a ring encircles a dumbbell-shaped axle to generate a rotaxane. These insights allowed us to produce the first highly enantioenriched axially chiral catenane and the same approach gave access to a molecule containing the newly identified noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.


2021 ◽  
Author(s):  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler ◽  
Steve Goldup

Chirality, the property of objects that are distinct from their own mirror image, is important in many scientific areas but particularly chemistry, where the appearance of molecular chirality because of rigid arrangements of atoms in space famously influences a molecule’s biological properties. Less generally appreciated is that two molecular rings with chemically distinct faces combined like links in a chain results in a chiral structure even when the rings are achiral. To date, no enantiopure examples of such mechanically axially chiral catenanes has been reported. We re-examined the symmetry properties of the mechanically axially chiral motif and identified a straightforward route to such molecules from simple building blocks. We also identify that common representations of axially chiral catenanes obscure that a previously overlooked stereogenic unit arises when a ring is threaded onto a dumbbell-shaped molecule to generate a rotaxane. These insights allowed us to demonstrate the first stereoselective syntheses of an axially chiral catenane and a noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.


2021 ◽  
Author(s):  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler ◽  
Steve Goldup

Chirality, the property of objects that are distinct from their own mirror image, is important in many scientific areas but particularly chemistry, where the appearance of molecular chirality because of rigid arrangements of atoms in space famously influences a molecule’s biological properties. Less generally appreciated is that two molecular rings with chemically distinct faces combined like links in a chain results in a chiral structure even when the rings are achiral. To date, no enantiopure examples of such mechanically axially chiral catenanes has been reported. We re-examined the symmetry properties of the mechanically axially chiral motif and identified a straightforward route to such molecules from simple building blocks. We also identify that common representations of axially chiral catenanes obscure that a previously overlooked stereogenic unit arises when a ring is threaded onto a dumbbell-shaped molecule to generate a rotaxane. These insights allowed us to demonstrate the first stereoselective syntheses of an axially chiral catenane and a noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.


Synthesis ◽  
2020 ◽  
Vol 52 (24) ◽  
pp. 3764-3780
Author(s):  
Ranadeep Talukdar

AbstractCyclic ketones, anhydrides, lactams and lactones are a particular class of molecules that are often used in synthesis, wherein their electrophilic properties are leveraged to enable facile Friedel–Crafts ring openings through nucleophilic attack at the carbonyl sp2 centre. The use of electron-rich alkoxybenzenes as nucleophiles has also become important since the discovery of the Friedel–Crafts reaction. As a result, various isomeric alkoxybenzenes are used for preparing starting materials in target-oriented syntheses. This review covers the instances of different alkoxybenzenes that are used as nucleophiles in ring-opening acylations with carbonyl-containing cyclic electrophiles, for the construction of important building blocks for multistep transformations. This review summarizes the ring-opening functionalization of three- to seven-membered molecular rings with alkoxybenzenes in a Friedel–Crafts fashion. Sometimes the rings need subtle or considerable activation by the help of Lewis acid(s), followed by nucleophilic attack. This review is aimed to be a summary of the important acylations of electron-rich alkoxybenzenes by nucleophilic ring-opening of cyclic molecules. The works cited employ a wide range of conditions and differently substituted substrates for target-oriented syntheses.1 Introduction and Scope2 Arenes for Acylative Ring Opening2.1 Three-Membered Rings: Ring Opening of Oxirane-2,3-dione2.2 Four-Membered Rings2.2.1 Ring Opening of Cyclobutanones2.2.2 Ring Opening of β-Lactams2.2.3 Ring Opening of β-Lactone2.3 Five-Membered Rings2.3.1 Ring Opening of Phthalimides2.3.2 Ring Opening of γ-Lactones2.3.3 Ring Opening of Anhydrides2.4 Six-Membered Rings2.5 Seven-Membered Rings3 Conclusion


2021 ◽  
Author(s):  
John Maynard ◽  
Peter Gallagher ◽  
David Lozano ◽  
Patrick Butler ◽  
Steve Goldup

Chirality, the property of objects that are distinct from their own mirror image, is important in many scientific areas but particularly chemistry, where the appearance of molecular chirality because of rigid arrangements of atoms in space famously influences a molecule’s biological properties. Less generally appreciated is that two molecular rings with chemically distinct faces combined like links in a chain results in a chiral structure even when the rings are achiral. To date, no enantiopure examples of such mechanically axially chiral catenanes has been reported. We re-examined the symmetry properties of the mechanically axially chiral motif and identified a straightforward route to such molecules from simple building blocks. We also identify that common representations of axially chiral catenanes obscure that a previously overlooked stereogenic unit arises when a ring is threaded onto a dumbbell-shaped molecule to generate a rotaxane. These insights allowed us to demonstrate the first stereoselective syntheses of an axially chiral catenane and a noncanonical axially chiral rotaxane motif. With methods to access these structures in hand, the process of exploring their properties and applications can now begin.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


Sign in / Sign up

Export Citation Format

Share Document