scholarly journals Wall-crossings and a categorification of K-theory stable bases of the Springer resolution

2021 ◽  
Vol 157 (11) ◽  
pp. 2341-2376
Author(s):  
Changjian Su ◽  
Gufang Zhao ◽  
Changlong Zhong

Abstract We compare the $K$ -theory stable bases of the Springer resolution associated to different affine Weyl alcoves. We prove that (up to relabelling) the change of alcoves operators are given by the Demazure–Lusztig operators in the affine Hecke algebra. We then show that these bases are categorified by the Verma modules of the Lie algebra, under the localization of Lie algebras in positive characteristic of Bezrukavnikov, Mirković, and Rumynin. As an application, we prove that the wall-crossing matrices of the $K$ -theory stable bases coincide with the monodromy matrices of the quantum cohomology of the Springer resolution.

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1032
Author(s):  
Raúl Durán Díaz ◽  
Víctor Gayoso Martínez ◽  
Luis Hernández Encinas ◽  
Jaime Muñoz Masqué

A method is presented that allows one to compute the maximum number of functionally-independent invariant functions under the action of a linear algebraic group as long as its Lie algebra admits a basis of square-zero matrices even on a field of positive characteristic. The class of such Lie algebras is studied in the framework of the classical Lie algebras of arbitrary characteristic. Some examples and applications are also given.


1987 ◽  
Vol 39 (5) ◽  
pp. 1078-1106 ◽  
Author(s):  
Rolf Farnsteiner

It is well-known that the classical vanishing results of the cohomology theory of Lie algebras depend on the characteristic of the underlying base field. The theorems of Cartan and Zassenhaus, for instance, entail that non-modular simple Lie algebras do not admit non-trivial central extensions. In contrast, early results by Block [3] prove that this conclusion loses its validity if the underlying base field has positive characteristic.Central extensions of a given Lie algebra L, or equivalently its second cohomology group H(L, F), can be conveniently described by means of derivations φ:L → L*.


2009 ◽  
Vol 16 (01) ◽  
pp. 131-142
Author(s):  
Bin Xin ◽  
Yuezhu Wu

For a field 𝔽 of characteristic 0 and an additive subgroup Γ of 𝔽, there corresponds a Lie algebra [Formula: see text] of generalized Weyl type. Given a total order of Γ and a weight Λ, a generalized Verma [Formula: see text]-module M(Λ, ≺) is defined. In this paper, the irreducibility of M(Λ, ≺) is completely determined. It is also proved that an irreducible highest weight module over the [Formula: see text]-infinity algebra [Formula: see text] is quasifinite if and only if it is a proper quotient of a Verma module.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2018 ◽  
Vol 13 (3) ◽  
pp. 59-63 ◽  
Author(s):  
D.T. Siraeva

Equations of hydrodynamic type with the equation of state in the form of pressure separated into a sum of density and entropy functions are considered. Such a system of equations admits a twelve-dimensional Lie algebra. In the case of the equation of state of the general form, the equations of gas dynamics admit an eleven-dimensional Lie algebra. For both Lie algebras the optimal systems of non-similar subalgebras are constructed. In this paper two partially invariant submodels of rank 3 defect 1 are constructed for two-dimensional subalgebras of the twelve-dimensional Lie algebra. The reduction of the constructed submodels to invariant submodels of eleven-dimensional and twelve-dimensional Lie algebras is proved.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


Author(s):  
Ruipu Bai ◽  
Shuai Hou ◽  
Yansha Gao

We study the structure of n-Lie algebras with involutive derivations for n≥2. We obtain that a 3-Lie algebra A is a two-dimensional extension of Lie algebras if and only if there is an involutive derivation D on A=A1  ∔  A-1 such that dim A1=2 or dim A-1=2, where A1 and A-1 are subspaces of A with eigenvalues 1 and -1, respectively. We show that there does not exist involutive derivations on nonabelian n-Lie algebras with n=2s for s≥1. We also prove that if A is a (2s+2)-dimensional (2s+1)-Lie algebra with dim A1=r, then there are involutive derivations on A if and only if r is even, or r satisfies 1≤r≤s+2. We discuss also the existence of involutive derivations on (2s+3)-dimensional (2s+1)-Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document