Quantification of the Loss Conduit Aperture During Lost Circulation in Fractured Carbonates

2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Ashley Johnson

Abstract Fractured carbonate formations around the world are prone to lost circulation that not only affects the well construction process but creating a longtime effect on the wellbore integrity. Despite multiple attempts to cure them the success rate is usually low. This manuscript is aiming to provide a new vision on the reason of lost circulation across carbonates. To have better understanding of the complete losses across the fractured carbonates the series of studies were initiated. At first to understand the strength of the loss zone the fracture closing pressure was evaluated via study of the fluid level in the annulus and back-calculation of the drilling fluid density effect on it. Secondary, the rock properties across the loss circulation zones were studied by using the microresistivity images, dip data, and imaging of fluid-saturated porous media. At last, the trial tests with different treatment materials were performed to evaluate the effect of it on curing the losses. The results of the studies brought new information and explained some previous unknowns. The formation strength across lost circulation zone was measured and it was confirmed to remain constant despite other changes of the well conduction parameters. It was also confirmed that the carbonates are naturally highly fractured having over 900 fractures along the wellbore. The lost circulation zone was characterized, and it was confirmed that the losses were not related to the fractures but rather to the karst, dissolution and to mega-fractures. The size and dip of the fractures were identified, and it was proven the possibility to treat them with conventional materials. However, the size of identified mega-fractures and karst zones exceed the fractures by 100 times in true vertical depth, and in horizontal wells the difference is thousands times due to measured depth. This new information explains the previous unsuccessful attempts with the conventional lost circulation materials. Further based on the newly available information the mathematic description of the lost circulation zones was provided.

2021 ◽  
Author(s):  
Alexey Ruzhnikov

Abstract Fractured carbonate formations are prone to lost circulation, which affects the well construction process and has longtime effect on well integrity. Depending on the nature of losses (either induced or related to local dissolutions) the success rate is different when the induced losses can be cured with a high chance, and the one related to dissolutions may take a long time, and despite multiple attempts, the success rate is normally low. To have a better understanding of the complete losses across the fractured carbonates, a series of studies were initiated. First, to understand the strength of the loss zone, the fracture closing pressure was evaluated studying the fluid level in the annulus and back-calculating the effect of drilling fluid density. Second, the formation properties across the loss circulation zones were studied using microresistivity images, dip data, and imaging of fluid-saturated porous media. The results of the studies brought a lot of new information and explained some previous mysteries. The formation strength across the lost circulation zone was measured, and it was confirmed that it remains constant despite other changes of the well construction parameters. Additionally, it was confirmed that the carbonates are naturally highly fractured, having over 900 fractures along the wellbore. The loss circulation zone was characterized, and it was confirmed that the losses are not related to the fractures but rather to the karst, dissolution, and megafractures. The size and dip of the fractures were identified, and it was proven the possibility to treat them with conventional materials. However, the size of identified megafractures and karst zones exceeding the fractures by 10 times in true vertical depth, and in horizontal wells the difference is even higher due to measured depth. This new information helps to explain the previous unsuccessful attempts with the conventional lost circulation materials. The manuscript provides new information on the fractured carbonate formation characterization not available previously in the literature. It allows to align the subsurface and drilling visions regarding the nature of the losses and further develop the curing mechanisms.


2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Edgar Echevarria

Abstract Carbonate formations around the world and specifically in a Middle East are prone to have total losses while drilling. And the nature of the losses often related to the highly fractured formations of the pay zone. When such fracture(s) is crossed by the wellbore the lost circulation initiated and led to a drilling without a return to a surface. To avoid undesired well control event or wellbore instability and to maintain the constant bottom hole pressure the mud cap drilling strategy often used as a preventative measure. The mud cap can be either the continuous or based on some volume or time interval, depends on the local practices or the policy of an operator. The mud cap flow rate as well as mud cap mud weight are often based on the best practices, not supported by an engineering study. To understand the behavior of the drilling fluid level in the annulus while drilling with total losses the drilling bottom hole assembly equipped with annular pressure while drilling tool was used. As the drilling required to use the continuous mud cap, then the specific guideline was developed on measurement of the bottom hole pressure and further conversion of it to the fluid level. The study was performed across pay zone with one or several loss circulation zones identified. As the result it was confirmed that the used mud cap flow rate had minor to none effect on the fluid level position in the annulus and that the bottom hole pressure remained the same. It showed as well that different loss zones are behaving in a different way, what can be considered as a factor affecting their ability to be sealed. The obtained knowledge and the information should help to understand better the loss circulation behavior as well be an important step toward development of the product which may cure the losses in high fractured carbonate formations. The results of the study can be implemented in any other project or a field.


2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Edgar Echevarria

Abstract In the Middle East many of the matured fields have fractured or vugular formations where the drilling is continued without return to a surface. This situation has been commonly interpreted as lack of hole cleaning and high risk of stuck pipe. The manuscript describes a study performed to analyze the hole cleaning while blind drilling horizontal sections. Most of the losses while drilling across fractured or vugular formations happen sudden, and this represents a risk of formation instability and stuck pipe. Additionally, the cuttings accumulation may lead to a potential pack off. To understand the hole cleaning the annular pressure while drilling was introduced in different sections, what via change of the equivalent static and dynamic densities describes the cutting and cavings accumulation in the annulus. Additionally, the hole cleaning behavior with different fluids pumped through the drillstring (i.e. drilling fluid, water, water with sweeps) was studied. The proposed study was performed in 4 different fields, 9 wells, across horizontal 6⅛-in. sections with total lost circulation. It was identified that while drilling with full returns ECD vs ESD variations are within 1.5 ppg, those variations are matching with the modeling of hydraulics. Once total losses encountered the variations between ECD and ESD are very low - within 0.2 ppg - indicating that annular friction losses below the loss circulation zone are minimal. This support the theory that all the drilled cuttings are properly lifted from bottom and carried to the karst into the loss circulation zone and not fluctuating above the loss zone. Additionally, minor to no relation found in hole cleaning while drilling with mud or a water with sweeps. This finding also is aligned with the stuck pipe statistics that shows higher incidents of stuck pipe while drilling the with full circulation due to pack off. The manuscript confirms the theory of the hole cleaning in total lost circulation and application of different hole cleaning practices to improve it. The results of the study can be implemented in any project worldwide.


2021 ◽  
Author(s):  
Diana Amangeldiyeva ◽  
Aida Askarovna Aliyeva ◽  
Yerlan Amanbayev ◽  
Julmar Shaun Sadicon Toralde ◽  
Timothy Peter Higginson ◽  
...  

Abstract This paper describes the development and field deployment of a new downhole isolation valve system called the Retrievable, Instrumented & Tandem Downhole Deployment Valve (RIT-DDV). The purpose of this technology is to provide a temporary mechanical barrier to isolate and monitor the well during drilling operations in an environment where a full column of single-phase fluid cannot be maintained. The RIT-DDV is based on predominantly used downhole isolation valve (DIV) design and technology, which is a hydraulic flapper-type isolation device installed in the casing that seals the open hole during pipe tripping operations. The key features of the new RIT-DDV systems are dual flapper valves with three downhole pressure and temperature gauges to take measurements above, between, and below the flappers. The advantage of this configuration is that it enhances safety by enabling double-block-and-bleed system functionality, providing valve redundancy, and moreover allowing for continuous real-time monitoring of downhole well conditions. In addition, the RIT-DDV is designed to be reusable and can be tested upon installation and replaced if necessary. The RIT-DDV system enabled the operator to isolate and monitor the well while drilling through a depleted formation that prevented drilling with a full column of single-phase drilling fluid. The RIT-DDV was successfully trialed in western Kazakhstan and demonstrated the potential of this technology to enhance the safety of drilling heavily fractured carbonate formations with reservoir fluids containing hydrogen sulfide (H2S) / carbon dioxide (CO2) that are prone to total loss of circulation. The downhole pressure / temperature monitoring capabilities that the system provides within the casing string helped drill through the depleted fractured carbonate reservoir section without incurring non-productive time (NPT).


2013 ◽  
Vol 6 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Kaihe Lv ◽  
Hanyi Zhong ◽  
Guanlong Ren

This study presents a chemical lost circulation agent with some distinct advantages that make it suitable for use in controlling severe leakage during drilling process. It is a granular solid with irregular shape and able to bridge or fill the cracks and other porous or faulty formations into where the drilling fluid is lost. Then this agent will undergo a chemical reaction with water, and the reaction products fill between particles and bind tightly lost circulation agent particles to each others or to the rocks at the lost circulation zone, thus effectively enhance the compressive strength of the cementing body formed by the agent and prevent lost circulation. Temperature, particle size, and additives added have been shown to have a significant influence on the consolidating rate and compressive strength of the cementing body. In addition, the cementing body has certain permeability, and the permeability can be adjusted, so this agent is proper for use to control lost circulation in reservoir.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1957 ◽  
Author(s):  
Yuan ◽  
Wei ◽  
Zhang ◽  
Qin

Water–rock interactions can alter rock properties through chemical reactions during subsurface transport processes like geological CO2 sequestration (GCS), matrix acidizing, and waterflooding in carbonate formations. Dynamic changes in rock properties cause a failure of waterflooding and GCS and could also dramatically affect the efficiency of the acidizing. Efficient numerical simulations are thus essential to the optimized design of those subsurface processes. In this paper, we develop a three-dimensional (3D) numerical model for simulating the coupled processes of fluid flow and chemical reactions in fractured carbonate formations. In the proposed model, we employ the Stokes–Brinkman equation for momentum balance, which is a single-domain formulation for modeling fluid flow in fractured porous media. We then couple the Stokes–Brinkman equation with reactive-transport equations. The model can be formulated to describe linear as well as radial flow. We employ a decoupling procedure that sequentially solves the Stokes–Brinkman equation and the reactive transport equations. Numerical experiments show that the proposed method can model the coupled processes of fluid flow, solute transport, chemical reactions, and alterations of rock properties in both linear and radial flow scenarios. The rock heterogeneity and the mineral volume fractions are two important factors that significantly affect the structure of conductive channels.


2021 ◽  
Vol 183 (3) ◽  
Author(s):  
Mario Ayala ◽  
Gioia Carinci ◽  
Frank Redig

AbstractWe study the symmetric inclusion process (SIP) in the condensation regime. We obtain an explicit scaling for the variance of the density field in this regime, when initially started from a homogeneous product measure. This provides relevant new information on the coarsening dynamics of condensing interacting particle systems on the infinite lattice. We obtain our result by proving convergence to sticky Brownian motion for the difference of positions of two SIP particles in the sense of Mosco convergence of Dirichlet forms. Our approach implies the convergence of the probabilities of two SIP particles to be together at time t. This, combined with self-duality, allows us to obtain the explicit scaling for the variance of the fluctuation field.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 683-687
Author(s):  
A. SILVA-CASTILLO ◽  
F. PEREZ-RODRIGUEZ

We have applied the 45° reflectometry for the first time to study exciton-polaritons in quantum wells. The 45° reflectometry is a new polarization-modulation technique, which is based on the measurement of the difference [Formula: see text] between the p-polarization reflectivity (Rp) and the squared s-polarization reflectivity [Formula: see text] at an angle of incidence of 45°. We show that [Formula: see text] spectra may provide qualitatively new information on the exciton-polariton modes in a quantum well. These optical spectra turn out to be very sensitive to the zeros of the dielectric function along the quantum-well growth direction and, therefore, allow to identify the resonances associated with the Z exciton-polariton mode. We demonstrate that 45° reflectometry could be a powerful tool for studying Z exciton-polariton modes in near-surface quantum wells, which are difficult to observe in simple spectra of reflectivity Rp


Sign in / Sign up

Export Citation Format

Share Document