Entropy generation of a nanofluid in a porous cavity with sinusoidal temperature at the walls and a heat source bellow

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dalia Sabina Cimpean ◽  
Ioan Pop

Purpose This paper aims to focus on the analysis of the entropy generation in an inclined square cavity filled with a porous media saturated by a nanofluid with sinusoidal temperature distribution on the side walls, adiabatic conditions on the upper wall and a heat source at the lower wall. Design/methodology/approach The two-phase nanofluid model including the Brownian diffusion and thermophoresis effects has been used for simulation of nanofluid transport inside the porous cavity. The governing equations and the entropy generation owing to fluid friction, heat and mass transfer are transformed in terms of the dimensionless variables, and the results are obtained by using the finite difference method of the second-order accuracy. Findings The numerical results of the model are investigated, and the effect of different important parameters, such as inclination angle of the cavity, amplitude ratio of the sinusoidal temperature or phase deviation, is discussed. The results for no inclination of the cavity is compared and successfully validated with previous reported results of the literature. The important findings of the study are focused mainly on the existence of the irreversibility phenomena which are affected by the conditions of the model and the values of the studied parameters. Originality/value The originality of this work is given by the presented mathematical model, the numerical solution with new results for entropy generation in an inclined porous cavity filled by a nanofluid and the applications for design of electronic or energy devices.

2019 ◽  
Vol 29 (12) ◽  
pp. 4549-4568 ◽  
Author(s):  
Dalia Sabina Cimpean ◽  
Ioan Pop

Purpose This paper aims to develop a numerical study of the steady natural convection in an inclined square porous cavity filled by a nanofluid with sinusoidal temperature distribution on the side walls and adiabatic conditions on the upper and lower walls. Design/methodology/approach Governing equations transformed in terms of the dimensionless variables using the Darcy–Boussinesq approximation have been solved numerically using a central finite-difference scheme. The Gaus-Siedel iteration technique was used for the system of discretized equations. The two-phase nanofluid model including the Brownian diffusion and thermophoresis effects has been considered for simulation of nanofluid transport inside the cavity. Findings The numerical results of streamlines, isotherms and isoconcentrations are investigated and the effect of different important parameters, such as inclination angle of the cavity, amplitude ratio of the sinusoidal temperature or phase deviation, is discussed. The results obtained for no inclination of the cavity are compared and successfully validated with previous reported results of the literature. The important findings of the study are focused on the changes made by the inclination angle and the periodic thermal boundary conditions, on the heat and fluid flow. Originality/value The originality of the present study is given by the mathematical model presented for an inclined cavity, the numerical solution with new results for inclined cavity and the applications for design of solar energy devices such as solar collectors in which the boundary conditions vary with time because of changes in weather conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


Author(s):  
Taher Armaghani ◽  
A.M. Rashad ◽  
Omid Vahidifar ◽  
S.R. Mishra ◽  
A.J. Chamkha

PurposeThis paper aims to concentrate on the impacts of a discrete heat source location on heat transfer and entropy generation for a Ag-water nanofluid in an open inclined L-shaped cavity.Design/methodology/approachThe governing partial differential equations for this study are computed by the finite volume method.FindingsThe results show that increasing the inclination angle leads to a rise in heat transfer. It is clear with the increase in the nanoparticles volume fraction that the thermal performance reduces, and it increases when the inclination angle increases.Originality/valueBecause of the continuous literature survey, the authors have not found a study that concentrates on the entropy generation in a wide variety of irregular ducts. Thus, in this paper, they present the analysis of entropy generation in an L-shaped duct experiencing a mixed convective flow with a nanofluid. The authors deal with this geometry because it is very useful in cooling systems of nuclear and chemical reactors and electronic components.


Author(s):  
Iman Rashidi ◽  
Lioua Kolsi ◽  
Goodarz Ahmadi ◽  
Omid Mahian ◽  
Somchai Wongwises ◽  
...  

Purpose This study aims to investigate a three-dimensional computational modelling of free convection of Al2O3 water-based nanofluid in a cylindrical cavity under heterogeneous heat fluxes that can be used as a thermal storage tank. Design/methodology/approach Effects of different heat flux boundary conditions on heat transfer and entropy generation were examined and the optimal configuration was identified. The simulation results for nanoparticle (NP) volume fractions up to 4 per cent, and Rayleigh numbers of 104, 105 and 106 were presented. Findings The results showed that for low Ra (104) the heat transfer and entropy generation patterns were symmetric, whereas with increasing the Rayleigh number these patterns became asymmetric and more complex. Therefore, despite the symmetric boundary conditions imposed on the periphery of the enclosure (uniform in Ɵ), it was necessary to simulate the problem as three-dimensional instead of two-dimensional. The simulation results showed that by selecting the optimal values of heat flux distribution and NP volume fraction for these systems the energy consumption can be reduced, and consequently, the energy efficiency can be ameliorated. Originality/value The results of the present study can be used for the design of energy devices such as thermal storage tanks, as both first and second laws of thermodynamics have been considered. Using the optimal design will reduce energy consumption.


2017 ◽  
Vol 27 (12) ◽  
pp. 2696-2716 ◽  
Author(s):  
Hakan F. Öztop ◽  
Nadezhda S. Bondareva ◽  
Mikhail A. Sheremet ◽  
Nidal Abu-Hamdeh

Purpose The main aim of this work is to perform a numerical analysis on natural convection with entropy generation in a partially open triangular cavity with a local heat source. Design/methodology/approach The unsteady governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The effects of dimensionless time is studied, and other governing parameters are Rayleigh number (Ra = 103 − 105), Prandtl number (Pr = 6.82), heater length (w/L = 0.2, 0.4 and 0.6) and distance of heater ratio (δ/L = 0.3). Findings An increase in the Rayleigh number leads to an increment of the fluid flow and heat transfer rates. Average Bejan number decreases with Ra as opposed to the average Nusselt number and average entropy generation. High values of Ra characterize a formation of long-duration oscillating behavior for the average Nusselt number and entropy generation. Originality/value The originality of this work is to analyze the entropy generation in natural convection in a one side open and partial heater-located cavity. This is a good application for electronical systems or building design.


2019 ◽  
Vol 30 (3) ◽  
pp. 1457-1477 ◽  
Author(s):  
B.J. Gireesha ◽  
S. Sindhu

Purpose This paper aims to focus on the steady state flow of nanoliquid through microchannel with the aid of internal heat source and different shapes of nanoparticle. The influence of MoS2 and TiO2 particles of nano size on flow and thermal fields is examined. The governing equations are modelled and then solved numerically. The obtained physical model is nondimensionalized using dimensionless quantities. The nondimensional equations are treated with numerical scheme. The outcome of the current work is presented graphically. Diverse substantial quantities such as entropy generation, Bejan number and Nusselt number for distinct parameters are depicted through graphs. The result established that nanoparticle of blade shape acquires larger thermal conductivity. Entropy analysis is carried out to explore the impact of various parameters such as nanoparticle volume fraction, magnetic parameter, radiation parameter and heat source parameter. Design/methodology/approach The resultant boundary value problem is converted into initial value problem using shooting scheme. Then the flow model is resolved using Runge-Kutta-Fehlberg-Fourth-Fifth order technique. Findings It is emphasized that entropy generation for the fluid satisfies N(ζ)(TiO2−water) > N(ζ)(MoS2−water). In addition to this, it is emphasized that N(ζ)sphere > N(ζ)brick > N(ζ)cylinder > N(ζ)platelet > N(ζ)blade. Also, it is obtained that blade-shaped nanoparticle has higher thermal conductivity for both MoS2 and TiO2. Originality/value Shape effects on Molybdenum disulphide and TiO2 nanoparticle in a microchannel with heat source is examined. The analysis of entropy shows that N(ζ)(TiO2−water) > N(ζ)(MoS2−water).


Sign in / Sign up

Export Citation Format

Share Document