scholarly journals Transcription Factor TonEBP Stimulates Hyperosmolality-Dependent Arginine Vasopressin Gene Expression in the Mouse Hypothalamus

2021 ◽  
Vol 12 ◽  
Author(s):  
Dong Hee Kim ◽  
Kwang Kon Kim ◽  
Tae Hwan Lee ◽  
Hyejin Eom ◽  
Jin Woo Kim ◽  
...  

The hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood. Here, we report a role for tonicity-responsive enhancer binding protein (TonEBP), a transcription factor sensitive to cellular tonicity, in regulating osmosensitive hypothalamic AVP gene transcription. Our immunohistochemical work shows that hypothalamic AVP cellular activity, as recognized by c-fos, was enhanced in parallel with an elevation in TonEBP expression within AVP cells following water deprivation. Interestingly, our in vitro investigations found a synchronized pattern of TonEBP and AVP gene expression in response to osmotic stress. Those results indicate a positive correlation between hypothalamic TonEBP and AVP production during dehydration. Promoter and chromatin immunoprecipitation assays confirmed that TonEBP can bind directly to conserved binding motifs in the 5’-flanking promoter regions of the AVP gene. Furthermore, dehydration- and TonEBP-mediated hypothalamic AVP gene activation was reduced in TonEBP haploinsufficiency mice, compared with wild TonEBP homozygote animals. Therefore, our result support the idea that TonEBP is directly necessary, at least in part, for the elevation of AVP transcription in dehydration conditions. Additionally, dehydration-induced reductions in body weight were rescued in TonEBP haploinsufficiency mice. Altogether, our results demonstrate an intracellular machinery within hypothalamic AVP cells that is responsible for dehydration-induced AVP synthesis.

2007 ◽  
Vol 403 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Benoit R. Gauthier ◽  
Yvan Gosmain ◽  
Aline Mamin ◽  
Jacques Philippe

The transcription factor Nkx6.1 is required for the establishment of functional insulin-producing β-cells in the endocrine pancreas. Overexpression of Nkx6.1 has been shown to inhibit glucagon gene expression while favouring insulin gene activation. Down-regulation resulted in the opposite effect, suggesting that absence of Nkx6.1 favours glucagon gene expression. To understand the mechanism by which Nkx6.1 suppresses glucagon gene expression, we studied its effect on the glucagon gene promoter activity in non-islet cells using transient transfections and gel-shift analyses. In glucagonoma cells transfected with an Nkx6.1-encoding vector, the glucagon promoter activity was reduced by 65%. In BHK21 cells, Nkx6.1 inhibited by 93% Pax6-mediated activation of the glucagon promoter, whereas Cdx2/3 and Maf stimulations were unaltered. Although Nkx6.1 could interact with both the G1 and G3 element, only the former displayed specificity for Nkx6.1. Mutagenesis of the three potential AT-rich motifs within the G1 revealed that only the Pax6-binding site preferentially interacted with Nkx6.1. Chromatin immunoprecipitation confirmed interaction of Nkx6.1 with the glucagon promoter and revealed a direct competition for binding between Pax6 and Nkx6.1. A weak physical interaction between Pax6 and Nkx6.1 was detected in vitro and in vivo suggesting that Nkx6.1 predominantly inhibits glucagon gene transcription through G1-binding competition. We suggest that cell-specific expression of the glucagon gene may only proceed when Nkx6.1, in combination with Pdx1 and Pax4, are silenced in early α-cell precursors.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009039
Author(s):  
Yi Kuang ◽  
Anna Pyo ◽  
Natanel Eafergan ◽  
Brittany Cain ◽  
Lisa M. Gutzwiller ◽  
...  

Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation.


2020 ◽  
Author(s):  
Yi Kuang ◽  
Anna Pyo ◽  
Natanel Eafergan ◽  
Brittany Cain ◽  
Lisa M. Gutzwiller ◽  
...  

AbstractNotch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation.


2019 ◽  
Vol 44 (8) ◽  
pp. 615-630 ◽  
Author(s):  
Elisa Casadei ◽  
Luca Tacchi ◽  
Colin R Lickwar ◽  
Scott T Espenschied ◽  
James M Davison ◽  
...  

Abstract Sensory systems such as the olfactory system detect chemical stimuli and thereby determine the relationships between the animal and its surroundings. Olfaction is one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex microbial communities, but microbial contribution to host olfactory gene expression remains unknown. In this study, we show that colonization of germ-free zebrafish and mice with microbiota leads to widespread transcriptional responses in olfactory organs as measured in bulk tissue transcriptomics and RT-qPCR. Germ-free zebrafish olfactory epithelium showed defects in pseudostratification; however, the size of the olfactory pit and the length of the cilia were not different from that of colonized zebrafish. One of the mechanisms by which microbiota control host transcriptional programs is by differential expression and activity of specific transcription factors (TFs). REST (RE1 silencing transcription factor, also called NRSF) is a zinc finger TF that binds to the conserved motif repressor element 1 found in the promoter regions of many neuronal genes with functions in neuronal development and differentiation. Colonized zebrafish and mice showed increased nasal expression of REST, and genes with reduced expression in colonized animals were strongly enriched in REST-binding motifs. Nasal commensal bacteria promoted in vitro differentiation of Odora cells by regulating the kinetics of REST expression. REST knockdown resulted in decreased Odora cell differentiation in vitro. Our results identify a conserved mechanism by which microbiota regulate vertebrate olfactory transcriptional programs and reveal a new role for REST in sensory organs.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


2006 ◽  
Vol 20 (6) ◽  
pp. 800-802 ◽  
Author(s):  
Satoru Kobayashi ◽  
Troy Lackey ◽  
Yuan Huang ◽  
Egbert Bisping ◽  
William T. Pu ◽  
...  

2008 ◽  
Vol 36 (6) ◽  
pp. 1262-1266 ◽  
Author(s):  
Kelly A. Jackson ◽  
Ruth A. Valentine ◽  
Lisa J. Coneyworth ◽  
John C. Mathers ◽  
Dianne Ford

Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.


2012 ◽  
Vol 303 (9) ◽  
pp. E1166-E1176 ◽  
Author(s):  
Wilfred Ip ◽  
Weijuan Shao ◽  
Yu-ting Alex Chiang ◽  
Tianru Jin

Certain single nucleotide polymorphisms (SNPs) in transcription factor 7-like 2 (TCF7L2) are strongly associated with the risk of type 2 diabetes. TCF7L2 and β-catenin (β-cat) form the bipartite transcription factor cat/TCF in stimulating Wnt target gene expression. cat/TCF may also mediate the effect of other signaling cascades, including that of cAMP and insulin in cell-type specific manners. As carriers of TCF7L2 type 2 diabetes risk SNPs demonstrated increased hepatic glucose production, we aimed to determine whether TCF7L2 expression is regulated by nutrient availability and whether TCF7L2 and Wnt regulate hepatic gluconeogenesis. We examined hepatic Wnt activity in the TOPGAL transgenic mouse, assessed hepatic TCF7L2 expression in mice upon feeding, determined the effect of insulin on TCF7L2 expression and β-cat Ser675 phosphorylation, and investigated the effect of Wnt activation and TCF7L2 knockdown on gluconeogenic gene expression and glucose production in hepatocytes. Wnt activity was observed in pericentral hepatocytes in the TOPGAL mouse, whereas TCF7L2 expression was detected in human and mouse hepatocytes. Insulin and feeding stimulated hepatic TCF7L2 expression in vitro and in vivo, respectively. In addition, insulin activated β-cat Ser675 phosphorylation. Wnt activation by intraperitoneal lithium injection repressed hepatic gluconeogenic gene expression in vivo, whereas lithium or Wnt-3a reduced gluconeogenic gene expression and glucose production in hepatic cells in vitro. Small interfering RNA-mediated TCF7L2 knockdown increased glucose production and gluconeogenic gene expression in cultured hepatocytes. These observations suggest that Wnt signaling and TCF7L2 are negative regulators of hepatic gluconeogenesis, and TCF7L2 is among the downstream effectors of insulin in hepatocytes.


2004 ◽  
Vol 72 (4) ◽  
pp. 2386-2389 ◽  
Author(s):  
Peter Staib ◽  
Ayfer Binder ◽  
Marianne Kretschmar ◽  
Thomas Nichterlein ◽  
Klaus Schröppel ◽  
...  

ABSTRACT The Tec1p transcription factor is involved in the expression of hypha-specific genes in Candida albicans. Although the induction of the hypha-associated SAP5 gene by serum in vitro depends on Tec1p, deletion of all Tec1p binding site consensus sequences from the SAP5 promoter did not affect its activation. In two different animal models of candidiasis, the SAP5 promoter was induced even in a Δtec1 deletion mutant, demonstrating that the requirement for Tec1p in gene expression in C. albicans depends on the environmental conditions within the host.


Sign in / Sign up

Export Citation Format

Share Document