t7 polymerase
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0257503
Author(s):  
Jessie A. C. Altieri ◽  
Klemens J. Hertel

Metabolic labeling is a widely used tool to investigate different aspects of pre-mRNA splicing and RNA turnover. The labeling technology takes advantage of native cellular machineries where a nucleotide analog is readily taken up and incorporated into nascent RNA. One such analog is 4-thiouridine (4sU). Previous studies demonstrated that the uptake of 4sU at elevated concentrations (>50μM) and extended exposure led to inhibition of rRNA synthesis and processing, presumably induced by changes in RNA secondary structure. Thus, it is possible that 4sU incorporation may also interfere with splicing efficiency. To test this hypothesis, we carried out splicing analyses of pre-mRNA substrates with varying levels of 4sU incorporation (0–100%). We demonstrate that increased incorporation of 4sU into pre-mRNAs decreased splicing efficiency. The overall impact of 4sU labeling on pre-mRNA splicing efficiency negatively correlates with the strength of splice site signals such as the 3’ and the 5’ splice sites. Introns with weaker splice sites are more affected by the presence of 4sU. We also show that transcription by T7 polymerase and pre-mRNA degradation kinetics were impacted at the highest levels of 4sU incorporation. Increased incorporation of 4sU caused elevated levels of abortive transcripts, and fully labeled pre-mRNA is more stable than its uridine-only counterpart. Cell culture experiments show that a small number of alternative splicing events were modestly, but statistically significantly influenced by metabolic labeling with 4sU at concentrations considered to be tolerable (40 μM). We conclude that at high 4sU incorporation rates small, but noticeable changes in pre-mRNA splicing can be detected when splice sites deviate from consensus. Given these potential 4sU artifacts, we suggest that appropriate controls for metabolic labeling experiments need to be included in future labeling experiments.


2021 ◽  
Author(s):  
Diana Gabriela Calvopina Chavez ◽  
Mikaela Anne Gardner ◽  
Joel S Griffitts

The bacteriophage T7 expression system is one of the most prominent transcription systems used in biotechnology and molecular-level research. However, T7 RNA polymerase is prone to read-through transcription due to its high processivity. As a consequence, enforcing efficient transcriptional termination is difficult. The termination hairpin found natively in the T7 genome is adapted to be inefficient, exhibiting 62% termination efficiency in vivo and even lower efficiency in vitro. In this study, we engineered a series of sequences that outperform the efficiency of the native terminator hairpin. By embedding a previously discovered 8-nucleotide T7 polymerase pause sequence within a synthetic hairpin sequence, we observed in vivo termination efficiency of 91%; by joining two short sequences into a tandem 2-hairpin structure, termination efficiency was increased to 98% in vivo and 91% in vitro. This study also tests the ability of these engineered sequences to terminate transcription of the Escherichia coli RNA polymerase. Two out of three of the most successful T7 polymerase terminators also facilitated termination of the bacterial polymerase with around 99% efficiency.


2021 ◽  
Author(s):  
Jessie A. C. Altieri ◽  
Klemens J. Hertel

Metabolic labeling is a widely used tool to investigate different aspects of pre-mRNA splicing and RNA turnover. The labeling technology takes advantage of native cellular machineries where a nucleotide analog is readily taken up and incorporated into nascent RNA. One such analog is 4-thiouridine (4sU). Previous studies demonstrated that the uptake of 4sU at elevated concentrations (>50µM) and extended exposure led to inhibition of rRNA synthesis and processing, presumably induced by changes in RNA secondary structure. Thus, it is possible that 4sU incorporation may also interfere with splicing efficiency. To test this hypothesis, we carried out splicing analyses of pre-mRNA substrates with varying levels of 4sU incorporation (0-100%). We demonstrate that increased incorporation of 4sU into pre-mRNAs decreased splicing efficiency. The overall impact of 4sU labeling on pre-mRNA splicing efficiency negatively correlates with the strength of splice site signals such as the 3’ and the 5’ splice sites. Introns with weaker splice sites are more affected by the presence of 4sU. We also show that transcription by T7 polymerase and pre-mRNA degradation kinetics were impacted at the highest levels of 4sU incorporation. Increased incorporation of 4sU caused elevated levels of abortive transcripts, and fully labeled pre-mRNA is more stable than its uridine-only counterpart. Cell culture experiments show that a small number of alternative splicing events were modestly, but statistically significantly influenced by metabolic labeling with 4sU at concentrations considered to be tolerable (40 µM). We conclude that at high 4sU incorporation rates small, but noticeable changes in pre-mRNA splicing can be detected when splice sites deviate from consensus. Given these potential 4sU artifacts, we suggest that appropriate controls for metabolic labeling experiments need to be included in future labeling experiments.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Gundra Sivakrishna Rao ◽  
Wenjun Jiang ◽  
Magdy Mahfouz

Abstract Genetic variation accelerates adaptation and resilience and enables the survival of species in their changing environment. Increasing the genetic diversity of crop species is essential to improve their yield and enhance food security. Synthetic directed evolution (SDE) employs localized sequence diversification (LSD) of gene sequence and selection pressure to evolve gene variants with better fitness, improved properties and desired phenotypes. Recently, CRISPR–Cas-dependent and -independent technologies have been applied for LSD to mediate synthetic evolution in diverse species, including plants. SDE holds excellent promise to discover, accelerate and expand the range of traits of the value in crop species. Here, we highlight the efficient SDE approaches for the LSD of plant genes, selection strategies and critical traits for targeted improvement. We discuss the potential of emerging technologies, including CRISPR–Cas base editing, retron editing, EvolvR and prime editing, to establish efficient SDE in plants. Moreover, we cover CRISPR–Cas-independent technologies, including T7 polymerase editor for continuous evolution. We highlight the key challenges and potential solutions of applying SDE technologies to improve the plant traits of the value.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 534
Author(s):  
Martin B. Koeppel ◽  
Jana Glaser ◽  
Tobias Baumgartner ◽  
Stefanie Spriewald ◽  
Roman G. Gerlach ◽  
...  

Stx2 is the major virulence factor of EHEC and is associated with an increased risk for HUS in infected patients. The conditions influencing its expression in the intestinal tract are largely unknown. For optimal management and treatment of infected patients, the identification of environmental conditions modulating Stx2 levels in the human gut is of central importance. In this study, we established a set of chromosomal stx2 reporter assays. One system is based on superfolder GFP (sfGFP) using a T7 polymerase/T7 promoter-based amplification loop. This reporter can be used to analyze stx2 expression at the single-cell level using FACSs and fluorescence microscopy. The other system is based on the cytosolic release of the Gaussia princeps luciferase (gluc). This latter reporter proves to be a highly sensitive and scalable reporter assay that can be used to quantify reporter protein in the culture supernatant. We envision that this new set of reporter tools will be highly useful to comprehensively analyze the influence of environmental and host factors, including drugs, small metabolites and the microbiota, on Stx2 release and thereby serve the identification of risk factors and new therapies in Stx-mediated pathologies.


2021 ◽  
Vol 185 ◽  
pp. 104977
Author(s):  
Bert Vanmechelen ◽  
Joren Stroobants ◽  
Kurt Vermeire ◽  
Piet Maes

2020 ◽  
Author(s):  
Bert Vanmechelen ◽  
Joren Stroobants ◽  
Kurt Vermeire ◽  
Piet Maes

AbstractMarburg virus (MARV) is the only known pathogenic filovirus not belonging to the genus Ebolavirus. Minigenomes have proven a useful tool to study MARV, but all existing MARV minigenomes are dependent on the addition of an exogenous T7 RNA polymerase to drive minigenome expression. However, exogenous expression of a T7 polymerase is not always feasible and acts as a confounding factor in compound screening assays. We have developed an alternative minigenome that is controlled by the natively expressed RNA polymerase II. We demonstrate here the characteristics of this new system and its applicability in a wide range of cell types. Our system shows a clear concentration-dependent activity and outperforms the existing T7 polymerase-based system at higher concentrations, especially in difficult-to-transfect cell lines. In addition, we show that our system can be used for high-throughput compound screening in a 96-well format, thereby providing an attractive alternative to previously developed MARV minigenomes.


Sign in / Sign up

Export Citation Format

Share Document