mlc20 phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Yajun Shi ◽  
Jingliu Liu ◽  
Dan Zhu ◽  
Likui Lu ◽  
Mengshu Zhang ◽  
...  

Abstract Assisted reproductive technology (ART) has been used globally among infertile couples. However, many epidemiological investigations have indicated that ART is associated with a range of long-term adverse health outcomes in offspring, including cardiovascular disease, obesity and increased plasma lipid levels. Until now, direct evidence has been limited regarding the pathological changes in vascular function in fetuses with ART. In this study, human umbilical cords were collected from healthy normal pregnancies and IVF-ET pregnancies. Vascular functional studies involving acetylcholine (ACh), antagonists of its specific receptors, and L-type calcium channel/PKC-MLC20 phosphorylation pathway specific inhibitors were conducted. Quantitative real-time PCR, Western blotting and methylation analyses were performed on umbilical vein samples. We found that the umbilical vein constriction induced by ACh in the IVF-ET group was significantly attenuated compared with that in the healthy normal pregnancy group, which was not only associated with the hypermethylation of ACh muscarinic receptor subtype 3 (CHRM3) and decreased expression of CHRM3, PKCβ and CaV1.2, but was also related to the reduced phosphorylation of MLC20. The present study revealed that the hypermethylation of CHRM3, leading to a reduction in CHRM3 expression and downregulation of the CaV1.2/PKC-MLC20 phosphorylation pathway, was responsible for the decreased sensitivity to ACh observed in the umbilical vein under IVF-ET conditions. The hypermethylation of CHRM3 caused by IVF-ET might play an important role in altered vasoconstriction and impact cardiovascular systems in the long run.


2021 ◽  
Vol 16 (1) ◽  
pp. 1141-1150
Author(s):  
Yuxing Zhang ◽  
Xiliang Zhang ◽  
Zhen Cao ◽  
Yun Huang ◽  
Yuexin Zheng ◽  
...  

Abstract Vascular hyporesponsiveness in the shock decompensation period is an important factor leading to death. Myosin light chain 20 (MLC20) is the main effector protein that regulates vascular reactivity. However, whether the change in semicarbazide-sensitive amine oxidase (SSAO) expression during hypoxia can change the MLC20 phosphorylation level, and its underlying mechanism were not clear. The amine oxidase copper containing 3 (AOC3) overexpressing adenovirus vector was constructed and transfected into rat intestinal microvascular endothelial cells (RIMECs) to overexpress SSAO, and the RIMECs were co-cultured with rat intestinal microvascular smooth muscle cells (RIMSCs). The changes in SSAO/inducible nitric oxide synthase (iNOS)/Rho associate coiled-coil containing protein kinase 1 (ROCK1) expression levels and MLC20 phosphorylation level were detected. Here we found that the increased SSAO by AOC3 overexpression can decrease the iNOS expression level and its activity after hypoxia. In addition, RIMSCs co-cultured with RIMECs overexpressed with AOC3 gene had significantly higher ROCK1 protein level and MLC20 phosphorylation level than RIMSCs co-cultured with normal RIMECs. Our study demonstrated that SSAO overexpression can significantly inhibit iNOS activity, promote RhoA/ROCK pathway activation, and increase the phosphorylation level of MLC20, which might be the potential mechanism in relieving the vascular hyporesponsiveness during shock decompensation.


2019 ◽  
Vol 317 (2) ◽  
pp. L235-L246 ◽  
Author(s):  
Ling Luo ◽  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow ◽  
Pasquale Chitano

The cyclic interaction between myosin crossbridges and actin filaments underlies smooth muscle contraction. Phosphorylation of the 20-kDa myosin light chain (MLC20) is a crucial step in activating the crossbridge cycle. Our current understanding of smooth muscle contraction is based on observed correlations among MLC20 phosphorylation, maximal shortening velocity ( Vmax), and isometric force over the time course of contraction. However, during contraction there are changes in the extent of phosphorylation of many additional proteins as well as changes in activation of enzymes associated with the signaling pathways. As a consequence, the mechanical manifestation of muscle contraction is likely to change with time. To simplify the study of these relationships, we measured the mechanical properties of airway smooth muscle at different levels of MLC20 phosphorylation at a fixed time during contraction. A simple correlation emerged when time-dependent variables were fixed. MLC20 phosphorylation was found to be directly and linearly correlated with the active stress, stiffness, and power of the muscle; the observed weak dependence of Vmax on MLC20 phosphorylation could be explained by the presence of an internal load in the muscle preparation. These results can be entirely explained by the Huxley crossbridge model. We conclude that when the influence of time-dependent events during contraction is held constant, the basic crossbridge mechanism in smooth muscle is the same as that in striated muscle.


2015 ◽  
Vol 93 (2) ◽  
pp. 155-162
Author(s):  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

The standard method for measuring the phosphorylation of the regulatory myosin light chain (MLC20) in smooth muscle is extraction of the light chain using a urea extraction buffer, urea–glycerol gel electrophoresis of the soluble portion of the extract (supernatant) and Western blot analysis. The undissolved portion of the tissue during extraction (the pellet) is usually discarded. Because the pellet contains a finite amount of MLC20, omission of the pellet could result in inaccurate measurement of MLC20 phosphorylation. In this study we compared the level of tracheal smooth muscle MLC20 phosphorylation in the supernatant alone, with that in the complete tissue homogenate (supernatant and pellet) using the standard method. The supernatant fraction showed the well-known double bands representing phosphorylated and un-phosphorylated MLC20. The dissolved pellet fraction showed varying amounts of un-phosphorylated and phosphorylated MLC20. There was a small but statistically significant overestimation of the percent MLC20 phosphorylation if the pellet was not taken into consideration. The overestimation was 7% ± 2% (mean ± SEM) (p < 0.05) in unstimulated muscle and 2% ± 1% (p < 0.05) in acetylcholine (10−6mol/L) stimulated muscle. This finding suggests that for accurate estimation of the stoichiometry of MLC20 phosphorylation it is necessary to consider the contribution from the pellet portion of the muscle tissue homogenate.


2014 ◽  
Vol 187 (2) ◽  
pp. 571-580 ◽  
Author(s):  
Liangming Liu ◽  
Gangming Yang ◽  
Yu Zhu ◽  
Jing Xu ◽  
Jiatao Zang ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51536 ◽  
Author(s):  
Limei Wang ◽  
Chao Jia ◽  
Zuyin Yu ◽  
Xiaolan Liu ◽  
Liping Kang ◽  
...  

2010 ◽  
Vol 161 (2) ◽  
pp. 312-320 ◽  
Author(s):  
Guangming Yang ◽  
Jing Xu ◽  
Tao Li ◽  
Jia Ming ◽  
Wei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document