ethyl hydroxyethyl cellulose
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 5)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Johanna Lyytikäinen ◽  
Sami-Seppo Ovaska ◽  
Isto Heiskanen ◽  
Kaj Backfolk

Abstract There is currently a great demand for sustainable and bio-derived coatings for fiber-based packaging materials, which are technically implementable with a high performance. The aim of this work was to investigate the grease resistance of coatings prepared from methyl nanocellulose when applied on paperboard. Co-additives selected from native microfibrillated cellulose (MFC) and hydrophobically modified ethyl(hydroxyethyl)cellulose (EHEC) were used in order to determine their impact on film formation and crack resistance for folds. Small and moderate coat weights were applied in order to determine the critical coat weight for the barrier properties. It was found that high grease resistance can be achieved with methyl nanocellulose and a combination of methyl nanocellulose and MFC coatings. Contact angle determinations for water on uncoated and coated materials showed that EHEC-MFC films have a very high contact angle which is due to both the surface chemistry and roughness. This indicates and confirms that EHEC may facilitate the wetting of oil and greases. Methyl nanocellulose mixed with hydrophobically modified EHEC significantly changed the barrier properties indicating a change in the film formation.


Cellulose ◽  
2020 ◽  
Author(s):  
Johanna Lyytikäinen ◽  
Maria Morits ◽  
Monika Österberg ◽  
Isto Heiskanen ◽  
Kaj Backfolk

AbstractThe use of nanomaterials and polymers from renewable resources is important in the search for sustainable alternatives to plastic-based packaging materials and films. In this work, self-supporting thin films prepared from derivatized and non-derivatized nanocellulose and cellulose derivatives were studied. The effect of drying temperature on the film-forming behavior of compositions comprising hydrophobically modified ethyl(hydroxyethyl)cellulose (EHEC), native microfibrillated cellulose (MFC) and nanocellulose made from methyl cellulose was determined. The interaction between the components was assessed from viscosity measurements made at different temperatures, the result being linked to a thermal-dependent association during liquid evaporation, and the subsequent barrier and film-forming properties. The effect of temperature on suspensions was clearly different between the materials, confirming that there were differences in interaction and association between EHEC–MFC and methyl nanocellulose–MFC compositions. The amphiphilic EHEC affected both the suspension homogeneity and the film properties. Air bubbles were formed under certain conditions and composition particularly in MFC films, dependent on the drying procedure. The presence of air bubbles did not affect the oxygen transmission rate or the oil and grease resistance. An increasing amount of MFC improved the oxygen barrier properties of the films.


2020 ◽  
Vol 236 ◽  
pp. 115991 ◽  
Author(s):  
Juliana P. Dreyer ◽  
Rafaela I. Stock ◽  
Leandro G. Nandi ◽  
Ismael C. Bellettini ◽  
Vanderlei G. Machado

Author(s):  
Erfan Dashtimoghadam ◽  
Hamed Salimi-Kenari ◽  
Rasool Nasseri ◽  
Kenneth D. Knudsen ◽  
Hamid Mirzadeh ◽  
...  

2017 ◽  
Vol 157 ◽  
pp. 1548-1556 ◽  
Author(s):  
Leandro Guarezi Nandi ◽  
Celso Rodrigo Nicoleti ◽  
Vanderléia Gava Marini ◽  
Ismael Casagrande Bellettini ◽  
Silvano Rodrigo Valandro ◽  
...  

2014 ◽  
Vol 86 (10) ◽  
pp. 4653-4656 ◽  
Author(s):  
Leandro G. Nandi ◽  
Celso R. Nicoleti ◽  
Ismael C. Bellettini ◽  
Vanderlei G. Machado

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
I. O. Arukalam ◽  
I. O. Madu ◽  
N. T. Ijomah ◽  
C. M. Ewulonu ◽  
G. N. Onyeagoro

The corrosion inhibition of mild steel in 1.0 M H2SO4 solution by ethyl hydroxyethyl cellulose has been studied in relation to the concentration of the additive using weight loss measurement, EIS, polarization, and quantum chemical calculation techniques. The results indicate that EHEC inhibited corrosion reaction in the acid medium and inhibition efficiency increased with EHEC concentration. Further increase in inhibition efficiency is observed in the presence of iodide ions, due to synergistic effect. Impedance results reveal that EHEC is adsorbed on the corroding metal surface. Adsorption followed a modified Langmuir isotherm, with very high negative values of the free energy of adsorption (ΔGads). The polarization data indicate that the inhibitor was of mixed type, with predominant effect on the cathodic partial reaction. The frontier molecular orbitals, HOMO (the highest occupied molecular orbital) and LUMO (the lowest unoccupied molecular orbital) as well as local reactivity of the EHEC molecule, were analyzed theoretically using the density functional theory to explain the adsorption characteristics at a molecular level. The theoretical predictions showed good agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document