mach and reynolds numbers
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Nicos Ladommatos

Air rifle and air pistol target shooting are included in major intentional and national sports competitions and are also highly popular sport pastimes. Published scientific studies of pellet drag are very rare, in contrast to a large number of scientific studies published on aerodynamic drag of sports balls and other sports projectiles. Measurements are presented of the drag coefficients for 31 air rifle pellets of mainly 4.5 mm (0.177 in) calibre having a wide range of geometries. The drag coefficient measurements were made with a low-turbulence open wind tunnel at flow velocity of 200 m/s (Mach and Reynolds numbers 0.57 and 56,000 for 4.5 mm pellets). The detailed geometry of some pellets was altered systematically in order to improve understanding of how pellet geometry affects drag coefficient. The drag coefficient for the 31 pellets varied widely from 0.36 to 0.78, and it was influenced substantially by the curvature of the flow separating from the pellet head rim. Large curvatures delayed flow re-attachment onto the pellet tail, thereby lowering pellet base pressure and increasing the value of drag coefficient. Pellets with hemi-spherical or ogive-shaped noses generally had lower values of drag coefficient than pellets with other nose shapes. The presence of the pellet tail was beneficial by providing a surface onto which the flow detaching from the pellet rim could re-attach. However, for minimisation of drag coefficient, the pellet tail had to be of a certain optimum length which depended on the shape of the pellet nose. Small differences in pellet geometry had significant influence on the value of drag coefficient. Increase in air velocity from 120 to 200 m/s had small influence on the value of drag coefficient for three common sports pellets having flat, conical and dome-shaped noses.


Author(s):  
Kenneth Clark ◽  
Michael Barringer ◽  
Karen Thole ◽  
Carey Clum ◽  
Paul Hiester ◽  
...  

Driven by the need for higher cycle efficiencies, overall pressure ratios for gas turbine engines continue to be pushed higher thereby resulting in increasing gas temperatures. Secondary air, bled from the compressor, is used to cool turbine components and seal the cavities between stages from the hot main gas path. This paper compares a range of purge flows and two different purge hole configurations for introducing the purge flow into the rim cavities. In addition, the mate face gap leakage between vanes is investigated. For this particular study, stationary vanes at engine-relevant Mach and Reynolds numbers were used with a static rim seal and rim cavity to remove rotational effects and isolate gas path effects. Sealing effectiveness measurements, deduced from the use of CO2 as a flow tracer, indicate that the effectiveness levels on the stator and rotor side of the cavity depend on the mass and momentum flux ratios of the purge jets relative to the swirl velocity. For a given purge flow rate, fewer purge holes resulted in better sealing than the case with a larger number of holes.


Author(s):  
Kenneth Clark ◽  
Michael Barringer ◽  
Karen Thole ◽  
Carey Clum ◽  
Paul Hiester ◽  
...  

Driven by the need for higher cycle efficiencies, overall pressure ratios for gas turbine engines continue to be pushed higher thereby resulting in increasing gas temperatures. Secondary air, bled from the compressor, is used to cool turbine components and seal the cavities between stages from the hot main gas path. This paper compares a range of purge flows and two different purge hole configurations for introducing the purge flow into the rim cavities. In addition, the mate face gap leakage between vanes is investigated. For this particular study, stationary vanes at engine relevant Mach and Reynolds numbers were used with a static rim seal and rim cavity to remove rotational effects and isolate gas path effects. Sealing effectiveness measurements, deduced from the use of CO2 as a flow tracer, indicate that the effectiveness levels on the stator and rotor side of the cavity depend on the mass and momentum flux ratios of the purge jets relative to the swirl velocity. For a given purge flow rate, fewer purge holes resulted in better sealing than the case with a larger number of holes.


2016 ◽  
Vol 20 (6) ◽  
pp. 2101-2112 ◽  
Author(s):  
Djordje Vukovic ◽  
Dijana Damljanovic

During a supersonic run of a blowdown wind tunnel, temperature of air in the test section drops which can affect planned measurements. Adverse thermal effects include variations of the Mach and Reynolds numbers, variation of airspeed, condensation of moisture on the model, change of characteristics of the instrumentation in the model, et cetera. Available data on thermal effects on instrumentation are pertaining primarily to long-run-duration wind tunnel facilities. In order to characterize such influences on instrumentation in the models, in short-run-duration blowdown wind tunnels, temperature measurements were made in the wing-panel-balance and main-balance spaces of two wind tunnel models tested in the T-38 wind tunnel. The measurements showed that model-interior temperature in a run increased at the beginning of the run, followed by a slower drop and, at the end of the run, by a large temperature drop. Panel-force balance was affected much more than the main balance. Ways of reducing the unwelcome thermal effects by instrumentation design and test planning are discussed.


Sign in / Sign up

Export Citation Format

Share Document