scholarly journals Competition between protons and substrate for binding to the major facilitator superfamily multidrug/H+ antiporter MdtM

2021 ◽  
Vol 2 ◽  
Author(s):  
Christopher J. Law

Abstract Proton electrochemical gradient-driven multidrug efflux activity of representatives of the major facilitator superfamily (MFS) of secondary active transporters contributes to antimicrobial resistance of pathogenic bacteria. Integral to the mechanism of these transporters is a proposed competition between substrate and protons for the binding site of the protein. The current work investigated the competition between protons and antimicrobial substrate for binding to the Escherichia coli MFS multidrug/H+ antiporter MdtM by measuring the quench of intrinsic protein fluorescence upon titration of substrate tetraphenylphosphonium into a solution of purified MdtM over a range of pH values between pH 8.8 and 5.9. The results, which revealed that protons inhibit binding of substrate to MdtM in a competitive manner, are consistent with those reported in a study on the related MFS multidrug/H+ antiporter MdfA and provide further evidence that competition for binding between substrate and protons is a general feature of secondary multidrug efflux.

2004 ◽  
Vol 48 (3) ◽  
pp. 909-917 ◽  
Author(s):  
Jianzhong Huang ◽  
Paul W. O'Toole ◽  
Wei Shen ◽  
Heather Amrine-Madsen ◽  
Xinhe Jiang ◽  
...  

ABSTRACT Antibiotic efflux is an important mechanism of resistance in pathogenic bacteria. Here we describe the identification and characterization of a novel chromosomally encoded multidrug resistance efflux protein in Staphylococcus aureus, MdeA (multidrug efflux A). MdeA was identified from screening an S. aureus open reading frame expression library for resistance to antibiotic compounds. When overexpressed, MdeA confers resistance on S. aureus to a range of quaternary ammonium compounds and antibiotics, but not fluoroquinolones. MdeA is a 52-kDa protein with 14 predicted transmembrane segments. It belongs to the major facilitator superfamily and is most closely related, among known efflux proteins, to LmrB of Bacillus subtilis and EmrB of Escherichia coli. Overexpression of mdeA in S. aureus reduced ethidium bromide uptake and enhanced its efflux, which could be inhibited by reserpine and abolished by an uncoupler. The mdeA promoter was identified by primer extension. Spontaneous mutants selected for increased resistance to an MdeA substrate had undergone mutations in the promoter for mdeA, and their mdeA transcription levels were increased by as much as 15-fold. The mdeA gene was present in the genomes of all six strains of S. aureus examined. Uncharacterized homologs of MdeA were present elsewhere in the S. aureus genome, but their overexpression did not mediate resistance to the antibacterials tested. However, MdeA homologs were identified in other bacteria, including Bacillus anthracis, some of which were shown to be functional orthologs of MdeA.


2000 ◽  
Vol 182 (5) ◽  
pp. 1340-1345 ◽  
Author(s):  
Guy Condemine

ABSTRACT The expression, in Escherichia coli, of variants of theErwinia chrysanthemi secretion genes outB andoutS under the Ptac promoter is toxic to the cells. During attempts to clone E. chrysanthemi genes able to suppress this toxicity, I identified two genes, sotA andsotB, whose products are able to reduce the isopropyl-β-d-thiogalactopyranoside (IPTG) induction of the E. coli lac promoter. SotA and SotB belong to two different families of the major facilitator superfamily. SotA is a member of the sugar efflux transporter family, while SotB belongs to the multidrug efflux family. The results presented here suggest that SotA and SotB are sugar efflux pumps. SotA reduces the intracellular concentration of IPTG, lactose, and arabinose. SotB reduces the concentration of IPTG, lactose, and melibiose. Expression ofsotA and sotB is not regulated by their substrates, but sotA is activated by the cyclic AMP receptor protein (CRP), while sotB is repressed by CRP. Lactose is weakly toxic for E. chrysanthemi. This toxicity is increased in a sotB mutant which cannot efficiently efflux lactose. This first evidence for a physiological role of sugar efflux proteins suggests that their function could be to reduce the intracellular concentration of toxic sugars or sugar metabolites.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Sushant Kumar ◽  
Arunabh Athreya ◽  
Ashutosh Gulati ◽  
Rahul Mony Nair ◽  
Ithayaraja Mahendran ◽  
...  

AbstractTransporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.


2020 ◽  
Vol 8 (2) ◽  
pp. 266 ◽  
Author(s):  
Sanath Kumar ◽  
Manjusha Lekshmi ◽  
Ammini Parvathi ◽  
Manisha Ojha ◽  
Nicholas Wenzel ◽  
...  

Pathogenic microorganisms that are multidrug-resistant can pose severe clinical and public health concerns. In particular, bacterial multidrug efflux transporters of the major facilitator superfamily constitute a notable group of drug resistance mechanisms primarily because multidrug-resistant pathogens can become refractory to antimicrobial agents, thus resulting in potentially untreatable bacterial infections. The major facilitator superfamily is composed of thousands of solute transporters that are related in terms of their phylogenetic relationships, primary amino acid sequences, two- and three-dimensional structures, modes of energization (passive and secondary active), and in their mechanisms of solute and ion translocation across the membrane. The major facilitator superfamily is also composed of numerous families and sub-families of homologous transporters that are conserved across all living taxa, from bacteria to humans. Members of this superfamily share several classes of highly conserved amino acid sequence motifs that play essential mechanistic roles during transport. The structural and functional importance of multidrug efflux pumps that belong to the major facilitator family and that are harbored by Gram-negative and -positive bacterial pathogens are considered here.


2019 ◽  
Vol 7 (9) ◽  
pp. 285 ◽  
Author(s):  
Pasqua ◽  
Grossi ◽  
Zennaro ◽  
Fanelli ◽  
Micheli ◽  
...  

Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.


2005 ◽  
Vol 280 (12) ◽  
pp. 12028-12034 ◽  
Author(s):  
Edgar M. Harvat ◽  
Yong-Mei Zhang ◽  
Can V. Tran ◽  
Zhongge Zhang ◽  
Matthew W. Frank ◽  
...  

2006 ◽  
Vol 188 (15) ◽  
pp. 5635-5639 ◽  
Author(s):  
Nadejda Sigal ◽  
Shahar Molshanski-Mor ◽  
Eitan Bibi

ABSTRACT The largest family of solute transporters (major facilitator superfamily [MFS]) includes proton-motive-force-driven secondary transporters. Several characterized MFS transporters utilize essential acidic residues that play a critical role in the energy-coupling mechanism during transport. Surprisingly, we show here that no single acidic residue plays an irreplaceable role in the Escherichia coli secondary multidrug transporter MdfA.


2016 ◽  
Vol 16 (1) ◽  
pp. 28-43 ◽  
Author(s):  
Sanath Kumar ◽  
Guixin He ◽  
Prathusha Kakarla ◽  
Ugina Shrestha ◽  
Ranjana KC ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document