scholarly journals Models of true arithmetic are integer parts of models of real exponentation

2021 ◽  
Vol 13 ◽  
Author(s):  
Merlin Carl ◽  
Lothar Sebastian Krapp

Exploring further the connection between exponentiation on real closed fields and the existence of an integer part modelling strong fragments of arithmetic, we demonstrate that each model of true arithmetic is an integer part of an exponential real closed field that is elementarily equivalent to the real numbers with exponentiation and that each model of Peano arithmetic is an integer part of a real closed field that admits an isomorphism between its ordered additive and its ordered multiplicative group of positive elements. Under the assumption of Schanuel’s Conjecture, we obtain further strengthenings for the last statement.

2005 ◽  
Vol 70 (1) ◽  
pp. 319-330 ◽  
Author(s):  
Alexander Raichev

AbstractWe show that for any real number, the class of real numbers less random than it, in the sense of rK-reducibility, forms a countable real closed subfield of the real ordered field. This generalizes the well-known fact that the computable reals form a real closed field.With the same technique we show that the class of differences of computably enumerable reals (d.c.e. reals) and the class of computably approximable reals (c.a. reals) form real closed fields. The d.c.e. result was also proved nearly simultaneously and independently by Ng (Keng Meng Ng, Master's Thesis, National University of Singapore, in preparation).Lastly, we show that the class of d.c.e. reals is properly contained in the class or reals less random than Ω (the halting probability), which in turn is properly contained in the class of c.a. reals, and that neither the first nor last class is a randomness class (as captured by rK-reducibility).


1984 ◽  
Vol 49 (2) ◽  
pp. 625-629 ◽  
Author(s):  
Lou van den Dries

(1.1) A well-known example of a theory with built-in Skolem functions is (first-order) Peano arithmetic (or rather a certain definitional extension of it). See [C-K, pp. 143, 162] for the notion of a theory with built-in Skolem functions, and for a treatment of the example just mentioned. This property of Peano arithmetic obviously comes from the fact that in each nonempty definable subset of a model we can definably choose an element, namely, its least member.(1.2) Consider now a real closed field R and a nonempty subset D of R which is definable (with parameters) in R. Again we can definably choose an element of D, as follows: D is a union of finitely many singletons and intervals (a, b) where – ∞ ≤ a < b ≤ + ∞; if D has a least element we choose that element; if not, D contains an interval (a, b) for which a ∈ R ∪ { − ∞}is minimal; for this a we choose b ∈ R ∪ {∞} maximal such that (a, b) ⊂ D. Four cases have to be distinguished:(i) a = − ∞ and b = + ∞; then we choose 0;(ii) a = − ∞ and b ∈ R; then we choose b − 1;(iii) a ∈ R and b ∈ = + ∞; then we choose a + 1;(iv) a ∈ R and b ∈ R; then we choose the midpoint (a + b)/2.It follows as in the case of Peano arithmetic that the theory RCF of real closed fields has a definitional extension with built-in Skolem functions.


2012 ◽  
Vol 75 (1) ◽  
pp. 1-11 ◽  
Author(s):  
P. D'Aquino ◽  
J. F. Knight ◽  
S. Starchenko

Shepherdson [14] showed that for a discrete ordered ring I, I is a model of I Open iff I is an integer part of a real closed ordered field. In this paper, we consider integer parts satisfying PA. We show that if a real closed ordered field R has an integer part I that is a nonstandard model of PA (or even IΣ4), then R must be recursively saturated. In particular, the real closure of I, RC (I), is recursively saturated. We also show that if R is a countable recursively saturated real closed ordered field, then there is an integer part I such that R = RC(I) and I is a nonstandard model of PA.


2007 ◽  
Vol 72 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Ehud Hrushovski ◽  
Ya'acov Peterzil

AbstractWe use a new construction of an o-minimal structure, due to Lipshitz and Robinson, to answer a question of van den Dries regarding the relationship between arbitrary o-minimal expansions of real closed fields and structures over the real numbers. We write a first order sentence which is true in the Lipshitz-Robinson structure but fails in any possible interpretation over the field of real numbers.


1978 ◽  
Vol 43 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Michael F. Singer

In this paper, we show that the theory of ordered differential fields has a model completion. We also show that any real differential field, finitely generated over the rational numbers, is isomorphic to some field of real meromorphic functions. In the last section of this paper, we combine these two results and discuss the problem of deciding if a system of differential equations has real analytic solutions. The author wishes to thank G. Stengle for some stimulating and helpful conversations and for drawing our attention to fields of real meromorphic functions.§ 1. Real and ordered fields. A real field is a field in which −1 is not a sum of squares. An ordered field is a field F together with a binary relation < which totally orders F and satisfies the two properties: (1) If 0 < x and 0 < y then 0 < xy. (2) If x < y then, for all z in F, x + z < y + z. An element x of an ordered field is positive if x > 0. One can see that the square of any element is positive and that the sum of positive elements is positive. Since −1 is not positive, an ordered field is a real field. Conversely, given a real field F, it is known that one can define an ordering (not necessarily uniquely) on F [2, p. 274]. An ordered field F is a real closed field if: (1) every positive element is a square, and (2) every polynomial of odd degree with coefficients in F has a root in F. For example, the real numbers form a real closed field. Every ordered field can be embedded in a real closed field. It is also known that, in a real closed field K, polynomials satisfy the intermediate value property, i.e. if f(x) ∈ K[x] and a, b ∈ K, a < b, and f(a)f(b) < 0 then there is a c in K such that f(c) = 0.


1963 ◽  
Vol 6 (2) ◽  
pp. 239-255
Author(s):  
Stanton M. Trott

The model of the real numbers described below was suggested by the fact that each irrational number ρ determines a linear ordering of J2, the additive group of ordered pairs of integers. To obtain the ordering, we define (m, n) ≤ (m', n') to mean that (m'- m)ρ ≤ n' - n. This order is invariant with group translations, and hence is called a "group linear ordering". It is completely determined by the set of its "positive" elements, in this case, by the set of integer pairs (m, n) such that (0, 0) ≤ (m, n), or, equivalently, mρ < n. The law of trichotomy for linear orderings dictates that only the zero of an ordered group can be both positive and negative.


2004 ◽  
Vol 77 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. D. Munn

AbstractIt is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.


1995 ◽  
Vol 60 (3) ◽  
pp. 817-831 ◽  
Author(s):  
Michael C. Laskowski ◽  
Charles Steinhorn

AbstractWe study o-minimal expansions of Archimedean totally ordered groups. We first prove that any such expansion must be elementarily embeddable via a unique (provided some nonzero element is 0-definable) elementary embedding into a unique o-minimal expansion of the additive ordered group of real numbers . We then show that a definable function in an o-minimal expansion of enjoys good differentiability properties and use this to prove that an Archimedean real closed field is definable in any nonsemilinear expansion of . Combining these results, we obtain several restrictions on possible o-minimal expansions of arbitrary Archimedean ordered groups and in particular of the rational ordered group.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


2017 ◽  
Vol 25 (3) ◽  
pp. 185-195 ◽  
Author(s):  
Christoph Schwarzweller

Summary In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].


Sign in / Sign up

Export Citation Format

Share Document