scholarly journals Development of impact attenuator analysis tools in crash scenario using Euler method and finite element analysis

2022 ◽  
Vol 69 (1) ◽  
Author(s):  
Malik Athafarras ◽  
Djati Wibowo Djamari ◽  
Muhamad Rausyan Fikri ◽  
Bentang Arief Budiman ◽  
Farid Triawan ◽  
...  

AbstractThe problem considered in this work is the development of simulation method for simulating car crash which utilizes simple car—impact attenuator model developed in MATLAB. Usually, car crash simulation is done using full finite element simulation which could take hours or days depending on the model size. The purpose of proposed method is to achieve quick results on the car crash simulation. Past works which utilizes simple car—impact attenuator model to simulate car crash use continuous time model and the impact attenuator parameter is obtained from the experimental results. Different from the related works, this work uses discrete time model, and the impact attenuator parameter is obtained from finite element simulation. Therefore, the proposed simulation method is not only achieving quick simulation results but also minimizing the cost and time in obtaining the impact attenuator parameter. The proposed method is suitable for parametric study of impact attenuator.

2014 ◽  
Vol 1033-1034 ◽  
pp. 462-465
Author(s):  
Yong Huang ◽  
De Jun Ma ◽  
W. Chen ◽  
Jia Liang Wang ◽  
Liang Sun

Based on the finite element analysis method to simulate the O-P hardness. Taking S45C steel as an example, comparative analysis of O-P hardness of finite element simulation and O-P hardness of instrument indentation hardness experiment, results show that difference of S45C steel’s O-P hardness between the finite element simulation and real experiment is-2.62% Accordingly seen, O-P hardness can be obtained by finite element numerical simulation method, it’s a possible way to study relations between O-P hardness and Vickers hardness based on finite element numerical simulation techniques.


2012 ◽  
Vol 619 ◽  
pp. 147-150
Author(s):  
Li Jun Luan ◽  
Jian Feng Qi ◽  
Mu Jia Ma ◽  
Xin Yue Gu ◽  
Li Ze Yao

Through the static analysis of the base of the auxiliary supporting equipment of the self-propelled road header, by ANSYS software base are static finite element simulation calculation. The finite element simulation method in the research that the move of roadheader auxiliary support base on the reliability of the static equipment is Reliability and accuracy. For accurate analysis self-advance of roadheader auxiliary support equipment of static base provides an efficient way


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


2018 ◽  
Vol 153 ◽  
pp. 06006
Author(s):  
Jiatong Ye ◽  
Hua Huang ◽  
Chenchen He ◽  
Guangyuan Liu

In this paper, a finite element model of membrane air spring in the vehicle is established, and its vertical stiffness characteristics under a certain inflation pressure are analysed. The result of finite element simulation method is compared with the result of the air spring bench test. The accuracy and reliability of the finite element simulation method in nonlinear analysis of air spring system are verified. In addition, according to the finite element method, the influence of the installation of the air spring limit sleeve on its stiffness is verified.


Author(s):  
Sachin Kumar Nikam ◽  
◽  
Sandeep Jaiswal ◽  

This paper deals with experimental and finite element analysis of the stretch flanging process using AA- 5052 sheets of 0.5 mm thick. A parametrical study has been done through finite element simulation to inspect the influence of procedural parametrical properties on maximum thinning (%) within the stretch flanging process. The influence of preliminary flange length of sheet metal blank, punch die clearance, and width was examined on the maximum thinning (%). An explicit dynamic finite element method was utilized using the finite element commercial package ABAQUS. Strain measurement was done after conducting stretch flanging tests. A Mesh convergence examination was carried out to ascertain the maximum percentage accuracy in FEM model. It is found through finite element simulation that the width of sheet metal blanks has a greater impact on the maximum percentage of thinning as compared to preliminary flange length, and clearance of the punch dies.


2013 ◽  
Vol 365-366 ◽  
pp. 224-228
Author(s):  
Tian Ma ◽  
Chuan Ri Li ◽  
Shuang Long Rong

To predict an airborne equipment lifetime with finite element simulation method, use ANSYS and Flothem, respectively, to analysis vibration stress and temperature stress, corrected by kinetic experiment; then import the results into the failure prediction software-CALCE PWA, set the intensity and duration of stress according to its mission profile, finally get the component failure life prediction results under comprehensive temperature and vibration stress; extract the Monte-Carlo simulation data, use the single point of failure distribution fitting, fault clustering and multipoint distribution fusion method to get the board and the whole machines lifetime and reliability prediction. The design refinement suggestion of the airborne equipment is given at the end of the conclusion.


2012 ◽  
Vol 522 ◽  
pp. 245-248 ◽  
Author(s):  
Hai Tao Liu ◽  
Ya Zhou Sun ◽  
De Bin Shan ◽  
Yan Quan Geng

There are lots of titanium alloy parts which have large-scale micro-structures in astronautic structure and medical implants, so the micro milling becomes one of the effective processing methods in getting the surface micro-structure. Because the titanium alloy has high caking property in processing, it needs a research on the cutting heat and force in order to get better machining precision and surface quality. According to the finite element theory in elastic and plasticity, the influence of cutting speed to the cutting heat and force is got by finite element simulation analysis to the titanium material TC4 in cutting process. It can get the simulation results of cutting heat and force in the micro milling processing by finite element analysis, and then compared, the basic influence which the cutting speed to the cutting heat and force is got. The correctness of the result is checked through cutting experiments.


2014 ◽  
Vol 875-877 ◽  
pp. 1116-1120
Author(s):  
Wen Liang Li ◽  
Wei Zhou ◽  
Li Gao ◽  
Wei Liang Dai

With finite element simulation method, the fatigue life of vehicle front floor is analyzed in different vehicle wheelbases and velocities, and the washboard enhancement coefficient is calculated, then K-v curve, K-m curve and K-v-m surface are drawn, with which influence of vehicle velocity and wheelbase on washboard enhancement coefficient is studied. The study results show that, when the wheelbase is constant, washboard enhancement coefficient increases first and then decreases with velocity increasing, and reaches peak at a certain velocity; when velocity is constant, washboard enhancement coefficient decreases as wheelbase increasing; when velocity and wheelbase both changes, washboard enhancement coefficient varies in K-v-m surface.


Sign in / Sign up

Export Citation Format

Share Document