undecenoic acid
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Paul Constantin Albu ◽  
Andreea Ferencz (Dinu) ◽  
Hussam Nadum Abdalraheem Al-Ani ◽  
Szidonia-Katalin Tanczos ◽  
Ovidiu Oprea ◽  
...  

The recovery of osmium from residual osmium tetroxide (OsO4) is a necessity imposed by its high toxicity, but also by the technical-economic value of metallic osmium. An elegant and extremely useful method is the recovery of osmium as a membrane catalytic material, in the form of nanoparticles obtained on a polymeric support. The subject of the present study is the realization of a composite membrane in which the polymeric matrix is the polypropylene hollow fiber, and the active component consists of the osmium nanoparticles obtained by reducing an alcoholic solution of osmium tetroxides directly on the polymeric support. The method of reducing osmium tetroxide on the polymeric support is based on the use of 10-undecenoic acid (10–undecylenic acid) (UDA) as a reducing agent. The osmium tetroxide was solubilized in t–butanol and the reducing agent, 10–undecenoic acid (UDA), in i–propanol, t–butanol or n–decanol solution. The membranes containing osmium nanoparticles (Os–NP) were characterized morphologically by the following: scanning electron microscopy (SEM), high-resolution SEM (HR–SEM), structurally: energy-dispersive spectroscopy analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy. In terms of process performance, thermal gravimetric analysis was performed by differential scanning calorimetry (TGA, DSC) and in a redox reaction of an organic marker, p–nitrophenol (PNP) to p–aminophenol (PAP). The catalytic reduction reaction with sodium tetraborate solution of PNP to PAP yielded a constant catalytic rate between 2.04 × 10−4 mmol s–1 and 8.05 × 10−4 mmol s−1.


2021 ◽  
Vol 8 (9) ◽  
pp. 121
Author(s):  
Marion Le Gal ◽  
Estelle Renard ◽  
Christelle Simon-Colin ◽  
Benoit Larrat ◽  
Valérie Langlois

Nanoparticles have recently emerged as valuable tools in biomedical imaging techniques. Here PEGylated and fluorinated nanocapsules based on poly(3-hydroxyalkanoate) containing a liquid core of perfluorooctyl bromide PFOB were formulated by an emulsion-evaporation process as potential 19F MRI imaging agents. Unsaturated poly(hydroxyalkanoate), PHAU, was produced by marine bacteria using coprah oil and undecenoic acid as substrates. PHA-g-(F; PEG) was prepared by two successive controlled thiol-ene reactions from PHAU with firstly three fluorinated thiols having from 3 up to 17 fluorine atoms and secondly with PEG-SH. The resulting PHA-g-(F; PEG)-based PFOB nanocapsules, with a diameter close to 250–300 nm, are shown to be visible in 19F MRI with an acquisition time of 15 min. The results showed that PFOB-nanocapsules based on PHA-g-(F; PEG) have the potential to be used as novel contrast agents for 19F MRI.


2020 ◽  
Vol 141 ◽  
pp. 111380
Author(s):  
A.M. Api ◽  
D. Belsito ◽  
S. Biserta ◽  
D. Botelho ◽  
M. Bruze ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chenjie Jiao ◽  
Rong Zhong ◽  
Yanfang Zhou ◽  
Hongfei Zhang

A UV-cured composite containing a rare earth complex was prepared for this study. First, the photoluminescent terbium complex was synthesized with a long-chain unsaturated fatty acid (10-Undecenoic acid) by a solution precipitation method, resulting in the 10-UA-Tb(III) complex. Its structure was proven by FTIR, elemental analysis, XRD, and TGA. The results indicated that the organic acid ligand successfully coordinated with the Tb3+ ion and that the complex had a chelate bidentate structure. The emission spectrum of the 10-UA-Tb(III) complex indicated that the complex can emit a bright green light with the unique luminescence of the Tb3+ ion. Furthermore, the luminescence properties of complexes with different ratios of Tb3+ and ligand were studied, and the ratio of Tb3+ and the ligand had an obvious impact on the luminescence intensity of the 10-UA-Tb(III) complex. Subsequently, the prepared rare earth complex was doped into a UV-cured coating in different proportions to obtain a UV-cured composite. The morphology of the rare earth UV-cured composite was observed by SEM. The images showed that the rare earth complex was dispersed uniformly in the polymer matrix. Moreover, the composites could emit fluorescence. Additionally, it has good thermal stability and compatibility with the resin. Therefore, these composites should have potential applications in UV curable materials, such as luminescence coatings.


2020 ◽  
Vol 907 ◽  
pp. 121074 ◽  
Author(s):  
Sergey A. Milenin ◽  
Fedor V. Drozdov ◽  
Elizaveta V. Selezneva ◽  
Sofia N. Ardabevskaia ◽  
Mikhail I. Buzin ◽  
...  
Keyword(s):  

2019 ◽  
Vol 81 (4) ◽  
Author(s):  
V Venepally ◽  
S. K Nethi ◽  
K Pallavi ◽  
C. R Patra ◽  
R. C. R Jala

2018 ◽  
Vol 122 ◽  
pp. S696-S702
Author(s):  
A.M. Api ◽  
D. Belsito ◽  
D. Botelho ◽  
M. Bruze ◽  
G.A. Burton ◽  
...  

2018 ◽  
Vol 155 ◽  
pp. 84-94 ◽  
Author(s):  
Carmen Valverde ◽  
Gerard Lligadas ◽  
Juan C. Ronda ◽  
Marina Galià ◽  
Virginia Cádiz

Sign in / Sign up

Export Citation Format

Share Document