scholarly journals Osmium Recovery as Membrane Nanomaterials through 10–Undecenoic Acid Reduction Method

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Paul Constantin Albu ◽  
Andreea Ferencz (Dinu) ◽  
Hussam Nadum Abdalraheem Al-Ani ◽  
Szidonia-Katalin Tanczos ◽  
Ovidiu Oprea ◽  
...  

The recovery of osmium from residual osmium tetroxide (OsO4) is a necessity imposed by its high toxicity, but also by the technical-economic value of metallic osmium. An elegant and extremely useful method is the recovery of osmium as a membrane catalytic material, in the form of nanoparticles obtained on a polymeric support. The subject of the present study is the realization of a composite membrane in which the polymeric matrix is the polypropylene hollow fiber, and the active component consists of the osmium nanoparticles obtained by reducing an alcoholic solution of osmium tetroxides directly on the polymeric support. The method of reducing osmium tetroxide on the polymeric support is based on the use of 10-undecenoic acid (10–undecylenic acid) (UDA) as a reducing agent. The osmium tetroxide was solubilized in t–butanol and the reducing agent, 10–undecenoic acid (UDA), in i–propanol, t–butanol or n–decanol solution. The membranes containing osmium nanoparticles (Os–NP) were characterized morphologically by the following: scanning electron microscopy (SEM), high-resolution SEM (HR–SEM), structurally: energy-dispersive spectroscopy analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy. In terms of process performance, thermal gravimetric analysis was performed by differential scanning calorimetry (TGA, DSC) and in a redox reaction of an organic marker, p–nitrophenol (PNP) to p–aminophenol (PAP). The catalytic reduction reaction with sodium tetraborate solution of PNP to PAP yielded a constant catalytic rate between 2.04 × 10−4 mmol s–1 and 8.05 × 10−4 mmol s−1.

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 936
Author(s):  
Gheorghe Nechifor ◽  
Florentina Mihaela Păncescu ◽  
Paul Constantin Albu ◽  
Alexandra Raluca Grosu ◽  
Ovidiu Oprea ◽  
...  

This paper presents a transport and recovery of silver ions through bulk liquid membranes based on n–decanol using as carriers 10–undecylenic acid and 10–undecylenyl alcohol. The transport of silver ions across membranes has been studied in the presence of two types of magnetic oxide nanoparticles obtained by the electrochemical method with iron electrodes in the electrolyte with and without silver ions, which act as promoters of turbulence in the membrane. Separation of silver ions by bulk liquid membranes using 10–undecylenic acid and 10–undecylenyl alcohol as carriers were performed by comparison with lead ions. The configuration of the separation module has been specially designed for the chosen separation process. Convective-generating magnetic nanoparticles were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR–SEM), energy dispersive spectroscopy analysis (EDAX), Fourier Transform InfraRed (FTIR) spectroscopy, thermal gravimetric analysis (TGA), differential scanning calorimetry and magnetization. The process performance (flux and selectivity) was tested were tested for silver ion transport and separation through n–decanol liquid membranes with selected carriers. Under the conditions of the optimized experimental results (pH = 7 of the source phase, pH = 1 of the receiving phase, flow rate of 30 mL/min for the source phase and 9 mL/min for the receiving phase, 150 rot/min agitation of magnetic nanoparticles) separation efficiencies of silver ions of over 90% were obtained for the transport of undecenoic acid and about 80% for undecylenyl alcohol.


2019 ◽  
Vol 15 (1) ◽  
pp. 155-174
Author(s):  
Govindharajan Sribala ◽  
Balakrishnan Meenarathi ◽  
Ramasamy Anbarasan

Thermally stable polyimides (PIs) were prepared by condensation technique at 160 ºC for 5 hours in N-methylpyrrolidone (NMP) medium under N2 atmosphere both in the presence and absence of metal (Ag) and metaloxide (MO) (V2O5) nanoparticles (NPs). The synthesized polymers are characterized by Fourier Transform Infra Red (FT-IR) spectroscopy, 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FE-SEM and EDX). The FT-IR spectrum showed a peak at 1786 cm-1 corresponding to the C=O stretching of dianhydride. The aromatic proton signals appeared between 6.7 and 7.5 ppm in the 1H-NMR spectrum of the resultant PIs. The oxydianiline (ODA) based PI with Ag NP loaded system exhibited the highest Tg value. The apparent rate constant values for the adsorption and catalytic reduction of p-nitrophenol (PNP), Cr6+ and rhodamine 6G (R6G) dye were determined with the help of UV-visible spectrophotometer. Among the catalysts, the system loaded with V2O5 NP has higher kapp values. The experimental results are critically analyzed and compared with the previously available literature values. Copyright © 2020 BCREC Group. All rights reserved 


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Luqman Ali Shah ◽  
Rida Javed ◽  
Mohammad Siddiq ◽  
Iram BiBi ◽  
Ishrat Jamil ◽  
...  

AbstractThe in-situ stabilization of Ag nanoparticles is carried out by the use of reducing agent and synthesized three different types of hydrogen (anionic, cationic, and neutral) template. The morphology, constitution and thermal stability of the synthesized pure and Ag-entrapped hybrid hydrogels were efficiently confirmed using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). The prepared hybrid hydrogels were used in the decolorization of methylene blue (MB) and azo dyes congo red (CR), methyl Orange (MO), and reduction of 4-nitrophenol (4-NP) and nitrobenzene (NB) by an electron donor NaBH4. The kinetics of the reduction reaction was also assessed to determine the activation parameters. The hybrid hydrogen catalysts were recovered by filtration and used continuously up to six times with 98% conversion of pollutants without substantial loss in catalytic activity. It was observed that these types of hydrogel systems can be used for the conversion of pollutants from waste water into useful products.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 511
Author(s):  
Roman Réh ◽  
Ľuboš Krišťák ◽  
Ján Sedliačik ◽  
Pavlo Bekhta ◽  
Monika Božiková ◽  
...  

The potential of using ground birch (Betula verrucosa Ehrh.) bark as an eco-friendly additive in urea-formaldehyde (UF) adhesives for plywood manufacturing was investigated in this work. Five-ply plywood panels were fabricated in the laboratory from beech (Fagus sylvatica L.) veneers bonded with UF adhesive formulations comprising three addition levels of birch bark (BB) as a filler (10%, 15%, and 20%). Two UF resin formulations filled with 10% and 20% wheat flour (WF) were used as reference samples. The mechanical properties (bending strength, modulus of elasticity and shear strength) of the laboratory-fabricated plywood panels, bonded with the addition of BB in the adhesive mixture, were evaluated and compared with the European standard requirements (EN 310 and EN 314-2). The mechanical strength of the plywood with the addition of BB in the adhesive mixture is acceptable and met the European standard requirements. Markedly, the positive effect of BB in the UF adhesive mixture on the reduction of formaldehyde emission from plywood panels was also confirmed. Initially, the most significant decrease in formaldehyde release (up to 14%) was measured for the plywood sample, produced with 15% BB. After four weeks, the decrease in formaldehyde was estimated up to 51% for the sample manufactured with 20% BB. The performed differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the findings of the study. As this research demonstrated, BB as a waste or by-product of wood processing industry, can be efficiently utilized as an environmentally friendly, inexpensive alternative to WF as a filler in UF adhesive formulations for plywood manufacturing.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2575
Author(s):  
Smaher M. Elbayomi ◽  
Haili Wang ◽  
Tamer M. Tamer ◽  
Yezi You

The preparation of bioactive polymeric molecules requires the attention of scientists as it has a potential function in biomedical applications. In the current study, functional substitution of alginate with a benzoyl group was prepared via coupling its hydroxyl group with benzoyl chloride. Fourier transform infrared spectroscopy indicated the characteristic peaks of aromatic C=C in alginate derivative at 1431 cm−1. HNMR analysis demonstrated the aromatic protons at 7.5 ppm assigned to benzoyl groups attached to alginate hydroxyl groups. Wetting analysis showed a decrease in hydrophilicity in the new alginate derivative. Differential scanning calorimetry and thermal gravimetric analysis showed that the designed aromatic alginate derivative demonstrated higher thermo-stability than alginates. The aromatic alginate derivative displayed high anti-inflammatory properties compared to alginate. Finally, the in vitro antioxidant evaluation of the aromatic alginate derivative showed a significant increase in free radical scavenging activity compared to neat alginate against DPPH (2,2-diphenyll-picrylhydrazyl) and ABTS free radicals. The obtained results proposed that the new alginate derivative could be employed for gene and drug delivery applications.


Author(s):  
Sadashiva Prabhu S ◽  
Kapilan Natesan ◽  
Nagaraj Shivappa Nayak

AbstractSelective catalytic reduction (SCR) systems are employed by automobile manufacturers for the abatement of environmental pollutants like oxides of nitrogen (NOx) emitted from exhaust gases of diesel engines. In SCR, the urea-water solution (UWS) is injected to exhaust gases in the form of a spray to generate the reducing agent NH3. Deposit formation at lower temperatures is a major concern with this technology. The deposits not only create backpressure but also leak NH3 to the environment as they deplete. It is very important to know the depletion characteristics of deposits formed at lower temperatures in order to assess the NH3 leakage to the environment when the engine exhaust gases attain higher temperatures. In the present work, deposits formed at a low-temperature range of 150–200°C for continuous run along with UWS injection were investigated. Additionally, they were aged at 300°C in the absence of UWS to check the variation in characteristics with the rise of temperature. By gravimetric analysis, it is inferred that the deposits formed at higher pre-age temperatures are less prone to depletion as the temperature increases. The elemental analysis using energy-dispersive X-ray spectroscopy (EDX) indicates slight variation in carbon, nitrogen and oxygen compositions for all the pre-age conditions. As an extended study, the byproducts at pre-age and post-age conditions were investigated through X-ray diffraction (XRD). The compounds like cyanuric acid (CYA) and biuret were not observed when pre-age samples were aged at 300°C. Instead, the compounds like ammelide, ammeline, triuret and melamine were observed. Scanning electron microscope (SEM) study revealed morphological changes in both pre-age and post-age samples. Further, the crystallinity variations were also observed for the changes in the heating cycles during deposit formation. The gravimetric analysis of deposits in pre-age and post-age conditions helps in predicting the amount of deposits for transient load cycles.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2158
Author(s):  
Nanci Vanesa Ehman ◽  
Diana Ita-Nagy ◽  
Fernando Esteban Felissia ◽  
María Evangelina Vallejos ◽  
Isabel Quispe ◽  
...  

Bio-polyethylene (BioPE, derived from sugarcane), sugarcane bagasse pulp, and two compatibilizers (fossil and bio-based), were used to manufacture biocomposite filaments for 3D printing. Biocomposite filaments were manufactured and characterized in detail, including measurement of water absorption, mechanical properties, thermal stability and decomposition temperature (thermo-gravimetric analysis (TGA)). Differential scanning calorimetry (DSC) was performed to measure the glass transition temperature (Tg). Scanning electron microscopy (SEM) was applied to assess the fracture area of the filaments after mechanical testing. Increases of up to 10% in water absorption were measured for the samples with 40 wt% fibers and the fossil compatibilizer. The mechanical properties were improved by increasing the fraction of bagasse fibers from 0% to 20% and 40%. The suitability of the biocomposite filaments was tested for 3D printing, and some shapes were printed as demonstrators. Importantly, in a cradle-to-gate life cycle analysis of the biocomposites, we demonstrated that replacing fossil compatibilizer with a bio-based compatibilizer contributes to a reduction in CO2-eq emissions, and an increase in CO2 capture, achieving a CO2-eq storage of 2.12 kg CO2 eq/kg for the biocomposite containing 40% bagasse fibers and 6% bio-based compatibilizer.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Huashan Yang ◽  
Yujun Che

The agglomeration of nano-CaCO3 (NC) is the largest bottleneck in applications in cementitious materials. If nano-CaCO3 modifies the surface of micron-scale limestone powder (LS), then it will form nano-CaCO3/limestone composite particles (NC/LS). It is known that micron-scale limestone is easily dispersed, and the “dispersion” of NC is governed by that of LS. Therefore, the dispersion of nano-CaCO3 can be improved by the NC/LS in cementitious materials. In this work, the preparation of NC/LS was carried out in a three-necked flask using the Ca(OH)2-H2O-CO2 reaction system. The morphology of NC/LS was observed by a field emission scanning electron microscope (FE-SEM). The effects of NC/LS on the hydration products and pore structure of cementitious materials are proposed. 5% NC/LS was added into cement paste and mortar, and the mechanical properties of the specimens were measured at a certain age. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TG), and backscattered electron imaging (BSE) were conducted on the specimens to investigate the hydration products and pore structure. The properties of specimens with NC/LS were compared to that of control specimens (without NC/LS). The results revealed that NC/LS reduced the porosity and improved the mechanical properties of the cementitious materials.


2015 ◽  
Vol 33 (3) ◽  
pp. 627-634 ◽  
Author(s):  
Zahoor H. Farooqi ◽  
Zonarah Butt ◽  
Robina Begum ◽  
Shanza Rhauf Khan ◽  
Ahsan Sharif ◽  
...  

Abstract Poly(N-isopropylacrylamide-co-methacrylic acid) microgels [p(NIPAM-co-MAAc)] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4) as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp) and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Sakvai Mohammed Safiullah ◽  
Deivasigamani Thirumoolan ◽  
Kottur Anver Basha ◽  
K. Mani Govindaraju ◽  
Dhanraj Gopi ◽  
...  

Abstract The synthesis of copolymers from different feed ratios of N-(p-bromophenyl)-2- methacrylamide (PBPMA) and glycidyl methacrylate (GMA) was achieved by using free radical solution polymerization technique and characterized using FT-IR, 1H and 13C NMR spectroscopy. The thermal stability of the synthesized copolymers was studied using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The molecular weight of the copolymer is determined by gel permeation chromatography (GPC). The corrosion performances of low nickel stainless steel specimens dip coated with different composition of copolymers were investigated in 0.5 M H2SO4 using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the low nickel stainless steel surfaces. However, it is observed that the mole ratio of PBPMA and GMA plays a major role in the protective nature of the copolymer.


Sign in / Sign up

Export Citation Format

Share Document