bond valence analysis
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
pp. 122871
Author(s):  
Tsuyoshi A. Kohlgruber ◽  
Samuel N. Perry ◽  
Ginger E. Sigmon ◽  
Allen G. Oliver ◽  
Peter C. Burns

2018 ◽  
Vol 82 (6) ◽  
pp. 1355-1367 ◽  
Author(s):  
Owen P. Missen ◽  
Stuart J. Mills ◽  
John Spratt ◽  
Mark D. Welch ◽  
William D. Birch ◽  
...  

ABSTRACTThe crystal structure of eztlite has been determined using single-crystal synchrotron X-ray diffraction and supported using electron microprobe analysis and powder diffraction. Eztlite, a secondary tellurium mineral from the Moctezuma mine, Mexico, is monoclinic, space group Cm, with a = 11.466(2) Å, b = 19.775(4) Å, c = 10.497(2) Å, β = 102.62(3)° and V = 2322.6(9) Å3. The chemical formula of eztlite has been revised to ${\rm Pb}_{\rm 2}^{2 +} {\rm Fe}_3^{3 +} $(Te4+O3)3(SO4)O2Cl from that stated previously as ${\rm Fe}_6^{3 +} {\rm Pb}_{\rm 2}^{2 +} $(Te4+O3)3(Te6+O6)(OH)10·nH2O. This change has been accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, Proposal 18-A. Eztlite was reported originally to be a mixed-valence Te oxysalt; however the crystal structure, bond-valence analysis and charge balance considerations clearly show that all Te is tetravalent. Eztlite contains a unique combination of elements and is only the second Te oxysalt to contain both sulfate and chloride. The crystal structure of eztlite contains mitridatite-like layers, with a repeating triangular nonameric [${\rm Fe}_9^{3 +} $O36]45– arrangement formed by nine edge-sharing Fe3+O6 octahedra, decorated by four trigonal pyramidal Te4+O3 groups, compared to PO4 or AsO4 tetrahedra in mitridatite-type minerals. In eztlite, all four tellurite groups associated with one nonamer are orientated with the lone pair of the Te atoms pointing in the same direction, whereas in mitridatite the central tetrahedron is orientated in the opposite direction to the others. In mitridatite-type structures, interlayer connections are formed exclusively via Ca2+ and water molecules, whereas the eztlite interlayer contains Pb2+, sulfate tetrahedra and Cl–. Interlayer connectivity in eztlite is achieved primarily by connections via the long bonds of Pbφ8 and Pbφ9 groups to sulfate tetrahedra and to Cl–. Secondary connectivity is via Te–O and Te–Cl bonds.


Author(s):  
O. P. Missen ◽  
S. J. Mills ◽  
M. D. Welch ◽  
J. Spratt ◽  
M. S. Rumsey ◽  
...  

The crystal structure of cesbronite has been determined using single-crystal X-ray diffraction and supported by electron-microprobe analysis, powder diffraction and Raman spectroscopy. Cesbronite is orthorhombic, space group Cmcm, with a = 2.93172 (16), b = 11.8414 (6), c = 8.6047 (4) Å and V = 298.72 (3) Å3. The chemical formula of cesbronite has been revised to CuII 3TeVIO4(OH)4 from CuII 5(TeIVO3)2(OH)6·2H2O. This change has been accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, Proposal 17-C. The previously reported oxidation state of tellurium has been shown to be incorrect; the crystal structure, bond valence studies and charge balance clearly show tellurium to be hexavalent. The crystal structure of cesbronite is formed from corrugated sheets of edge-sharing CuO6 and (Cu0.5Te0.5)O6 octahedra. The structure determined here is an average structure that has underlying ordering of Cu and Te at one of the two metal sites, designated as M, which has an occupancy Cu0.5Te0.5. This averaging probably arises from an absence of correlation between adjacent polyhedral sheets, as there are two different hydrogen-bonding configurations linking sheets that are related by a ½a offset. Randomised stacking of these two configurations results in the superposition of Cu and Te and leads to the Cu0.5Te0.5 occupancy of the M site in the average structure. Bond-valence analysis is used to choose the most probable Cu/Te ordering scheme and also to identify protonation sites (OH). The chosen ordering scheme and its associated OH sites are shown to be consistent with the revised chemical formula.


2017 ◽  
Vol 46 (37) ◽  
pp. 12494-12499 ◽  
Author(s):  
M. L. Tate ◽  
C. A. Fuller ◽  
M. Avdeev ◽  
H. E. A. Brand ◽  
G. J. McIntyre ◽  
...  

New Bi-containing apatite-type germanates, characterised by X-ray and neutron diffraction, impedance spectroscopy and bond valence analysis, display high oxide ion conductivity.


2015 ◽  
Vol 79 (3) ◽  
pp. 649-660 ◽  
Author(s):  
J. Plášil ◽  
R. Škoda

AbstractMarécottite, ideally Mg3[(UO2)4O3(OH)(SO4)2]2(H2O)28, a triclinic, Mg-dominant member of the zippeite group, was described originally from a small uranium deposit at La Creusaz in Wallis (Switzerland). It has recently been found at Jáchymov (Czech Republic), where it forms exceptional crystals, up to 0.3 mm across. According to an electron microprobe study of these crystals, marécottite from Jáchymov is chemically similar to the material from the La Creusaz deposit. However, the Jáchymov crystals exhibit more cation substitution (Zn2+ and Mn2+ for Mg2+). The chemical composition of marécottite from Jáchymov corresponds to the empirical formula [(Na0.05K0.07)Σ0.12(Mg1.83Zn0.41Mn0.41Cu0.15Ni0.08)Σ2.88Al0.07]Σ3.07(UO2)8[(SO4)3.77(SiO4)0.21]Σ3.98O6(OH)1.84·28H2O (the mean of four representative spots; calculated on the basis of eight U atoms and 28 H2O per formula unit and 1.84 OH for charge balance). According to single-crystal X-ray diffraction, marécottite from Jáchymov is triclinic, P1, a = 10.8084(2), b = 11.2519(3), c = 13.8465(3) Å, α = 66.222(2), β = 72.424(2), γ = 70.014(2)o, V = 1421.57(6) Å3 and Z = 1. The crystal structure was refined from a highly redundant dataset (30,491 collected reflections) to R1 = 0.0367 for all 7042 unique reflections. The refined structure confirms the previously determined structure for the crystal from the La Creusaz deposit. An extensive network of hydrogen bonds is an important feature that keeps the whole structure together, but the positions of H atoms had not been determined previously. The H-bond scheme proposed based on a detailed bond-valence analysis and the role of different types of molecular H2O in the structure is discussed.


ChemInform ◽  
2014 ◽  
Vol 45 (28) ◽  
pp. no-no
Author(s):  
Anis Bejaoui ◽  
Karima Horchani-Naifer ◽  
Mounir Hajji ◽  
Mokhtar Ferid

2014 ◽  
Vol 31 ◽  
pp. 46-53 ◽  
Author(s):  
Anis Béjaoui ◽  
Karima Horchani-Naifer ◽  
Mounir Hajji ◽  
Mokhtar Férid

2014 ◽  
Vol 78 (1) ◽  
pp. 119-129 ◽  
Author(s):  
J. Plášil ◽  
A. V. Kasatkin ◽  
R. Škoda ◽  
P. Škácha

AbstractKlajite, MnCu4(AsO4)2(AsO3OH)2(H2O)10, the Mn-Cu-bearing member of the lindackerite group, was found in Jáchymov, Czech Republic, as the second world occurrence. It is associated with ondrušite and other arsenate minerals growing on the quartz gangue with disseminated primary sulfides, namely tennantite and chalcopyrite. Electron-microprobe data showed klajite aggregates to be chemically inhomogeneous at larger scales, varying from Mn-Ca-rich to Cu-rich domains. The chemical composition of the the Mn-rich parts of aggregates can be expressed by the empirical formula (Mn0.46Ca0.22Cu0.07Mg0.02)∑0.77(Cu3.82Mg0.14Ca0.03Zn0.01)∑4.00(As1.94Si0.06)∑2.00O8[AsO2.73(OH)1.27]2(H2O)10 (mean of seven representative spots; calculated on the basis of As + Si + P = 4 a.p.f.u. (atoms per formula unit) and 10 H2O from ideal stoichiometry), showing a slight cationic deficiency at the key Me-site. According to single-crystal X-ray diffraction, klajite from Jáchymov is triclinic, P , with a = 6.4298(8), b = 7.9716(8), c = 10.707(2) Å, α = 85.737(12)°, β = 80.994(13)°, γ = 84.982(10)°, and V = 538.85(14) Å3, Z = 1. The crystal structure was refined to R1 = 0.0628 for 1034 unique observed reflections (with Iobs > 3σ(I)), confirming that klajite (Mn-Cu member) and ondrušite (Ca-Cu member) are isostructural. The current data-set allowed determination of the positions of several hydrogen atoms. Discussion on hydrogen bonding networks in the structure of klajite as well as detailed bond-valence analysis are provided.


2013 ◽  
Vol 470 ◽  
pp. 84-87 ◽  
Author(s):  
Huan Zhang ◽  
Xu Zhang ◽  
Jun Guo Ma

On the basis of a total of 382 ABO3-type compounds, the structural formability of ABO3-type perovskite compounds is investigated by using the bond valence model method. A new two-dimensional structural map approach for predicting the formability of ABO3-type perovskite compounds that relies on the ideal bond distances with the combination of bond valence parameter, coordination number and oxidation state is proposed. The sample points representing compounds of forming perovskite and non-perovskite are distributed in distinctively different regions. Some misclassified compounds are analyzed and some new compounds are tested within the new structure map. The developed approach can be used to search for new perovskite and perovskite-related compounds by screening all possible elemental combinations.


Sign in / Sign up

Export Citation Format

Share Document