The crystal-structure determination and redefinition of eztlite, Pb22+ Fe33+(Te4+O3)3(SO4)O2Cl

2018 ◽  
Vol 82 (6) ◽  
pp. 1355-1367 ◽  
Author(s):  
Owen P. Missen ◽  
Stuart J. Mills ◽  
John Spratt ◽  
Mark D. Welch ◽  
William D. Birch ◽  
...  

ABSTRACTThe crystal structure of eztlite has been determined using single-crystal synchrotron X-ray diffraction and supported using electron microprobe analysis and powder diffraction. Eztlite, a secondary tellurium mineral from the Moctezuma mine, Mexico, is monoclinic, space group Cm, with a = 11.466(2) Å, b = 19.775(4) Å, c = 10.497(2) Å, β = 102.62(3)° and V = 2322.6(9) Å3. The chemical formula of eztlite has been revised to ${\rm Pb}_{\rm 2}^{2 +} {\rm Fe}_3^{3 +} $(Te4+O3)3(SO4)O2Cl from that stated previously as ${\rm Fe}_6^{3 +} {\rm Pb}_{\rm 2}^{2 +} $(Te4+O3)3(Te6+O6)(OH)10·nH2O. This change has been accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, Proposal 18-A. Eztlite was reported originally to be a mixed-valence Te oxysalt; however the crystal structure, bond-valence analysis and charge balance considerations clearly show that all Te is tetravalent. Eztlite contains a unique combination of elements and is only the second Te oxysalt to contain both sulfate and chloride. The crystal structure of eztlite contains mitridatite-like layers, with a repeating triangular nonameric [${\rm Fe}_9^{3 +} $O36]45– arrangement formed by nine edge-sharing Fe3+O6 octahedra, decorated by four trigonal pyramidal Te4+O3 groups, compared to PO4 or AsO4 tetrahedra in mitridatite-type minerals. In eztlite, all four tellurite groups associated with one nonamer are orientated with the lone pair of the Te atoms pointing in the same direction, whereas in mitridatite the central tetrahedron is orientated in the opposite direction to the others. In mitridatite-type structures, interlayer connections are formed exclusively via Ca2+ and water molecules, whereas the eztlite interlayer contains Pb2+, sulfate tetrahedra and Cl–. Interlayer connectivity in eztlite is achieved primarily by connections via the long bonds of Pbφ8 and Pbφ9 groups to sulfate tetrahedra and to Cl–. Secondary connectivity is via Te–O and Te–Cl bonds.

Author(s):  
O. P. Missen ◽  
S. J. Mills ◽  
M. D. Welch ◽  
J. Spratt ◽  
M. S. Rumsey ◽  
...  

The crystal structure of cesbronite has been determined using single-crystal X-ray diffraction and supported by electron-microprobe analysis, powder diffraction and Raman spectroscopy. Cesbronite is orthorhombic, space group Cmcm, with a = 2.93172 (16), b = 11.8414 (6), c = 8.6047 (4) Å and V = 298.72 (3) Å3. The chemical formula of cesbronite has been revised to CuII 3TeVIO4(OH)4 from CuII 5(TeIVO3)2(OH)6·2H2O. This change has been accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, Proposal 17-C. The previously reported oxidation state of tellurium has been shown to be incorrect; the crystal structure, bond valence studies and charge balance clearly show tellurium to be hexavalent. The crystal structure of cesbronite is formed from corrugated sheets of edge-sharing CuO6 and (Cu0.5Te0.5)O6 octahedra. The structure determined here is an average structure that has underlying ordering of Cu and Te at one of the two metal sites, designated as M, which has an occupancy Cu0.5Te0.5. This averaging probably arises from an absence of correlation between adjacent polyhedral sheets, as there are two different hydrogen-bonding configurations linking sheets that are related by a ½a offset. Randomised stacking of these two configurations results in the superposition of Cu and Te and leads to the Cu0.5Te0.5 occupancy of the M site in the average structure. Bond-valence analysis is used to choose the most probable Cu/Te ordering scheme and also to identify protonation sites (OH). The chosen ordering scheme and its associated OH sites are shown to be consistent with the revised chemical formula.


2017 ◽  
Vol 81 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Elena Sokolova ◽  
Fernando Cámara ◽  
Frank C. Hawthorne ◽  
Evgeny I. Semenov ◽  
Marco E. Ciriotti

AbstractLobanovite, K2Na(Fe42+Mg2Na)Ti2(Si4O12)2O2(OH)4, is a new mineral of the astrophyllite supergroup from Mt. Yukspor, the Khibiny alkaline massif, Kola Peninsula Russia. It has been known previously under the following names: monoclinic astrophyllite, magnesium astrophyllite, magnesiumastrophyllite and magnesioastrophyllite but has never been formally proposed and approved as a valid mineral species by the Commission on new Minerals, Nomenclature and Classification of the International Mineralogical Association. It has now been revalidated and named lobanovite after Dr. Konstantin V. Lobanov, a prominent Russian ore geologist who worked in the Kola Peninsula for more than forty years (Nomenclature voting proposal 15-B). Lobanovite has been described from pegmatitic cavities on Mt. Yukspor where it occurs as elongated bladed crystals, up to 0.04 mm wide and 0.2 mm long, with a straw yellow to orange colour. Associated minerals are shcherbakovite, lamprophyllite, delindeite, wadeite, umbite and kostylevite. Lobanovite is biaxial (–) with refractive indices (λ = 589 nm) α = 1.658, βcalc. = 1.687, γ = 1.710; 2Vmeas. = 81.5– 83°. Lobanovite is monoclinic, space group C2/m, a = 5.3327(2), b = 23.1535(9), c = 10.3775(4) Å, β = 99.615(1)°, V = 1263.3 (1) Å 3, Z = 2. The six strongest reflections in the powder X-ray diffraction data [d (Å), I, (hkl)] are: 3.38, 100, (003); 2.548, 90, (063); 10.1, 80, (001); 3.80, 60, (042,131); 3.079, 50, (132,062); 2.763, 90, (1̄71). The chemical composition of lobanovite was determined by electron-microprobe analysis and the empirical formula (K1.97Ba0.01)∑1.98(Na0.65Ca0.14)∑0.79 (Fe3.182+Mg2.02Na1.00Mn0.72)∑6.92(Ti1.99Nb0.06)∑2.05[(Si8.01Al0.06)∑8.07O24]O2(OH)4.03F0.19 was calculated on the basis of 30.2 (O + OH + F) anions, with H2O calculated from structure refinement, Dcalc. = 3.161 g cm–3. In the structure of lobanovite, the main structural unit is the HOH block, which consists of one close-packed O (Octahedral) and two H (Heteropolyhedral) sheets. The M(1–4) octahedra form the O sheet and the T4O12 astrophyllite ribbons and [5]-coordinated Ti-dominant D polyhedra link through common vertices to form the H sheet. The HOH blocks repeat along [001], and K and Na atoms occur at the interstitial A and B sites. The simplified and end-member formulae of lobanovite are K2Na [(Fe2+,Mn)4Mg2Na]Ti2(Si4O12)2O2(OH)4 and K2Na(Fe42+Mg2Na)Ti2(Si4O12)2O2(OH)4, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Farzin Marandi ◽  
Ingo Pantenburg ◽  
Gerd Meyer

The new three-dimensional coordination polymer {[Bi(NNO)2(NO3)]·1.5H2O}n(1, NNO−= nicotinateN-oxide) was synthesized and characterized by elemental analysis, IR and1H-NMR spectroscopy, as well as single-crystal X-ray diffraction analysis.1crystallizes in the monoclinic space group C2/c. The crystal structure consists of a rectangular-shaped grid constructed with NNO linkers. Cavities of a diameter of 7.9–8.3 Å2are filled with disordered water molecules. The thermal stability of the compound was evaluated by thermogravimetric analysis.


1976 ◽  
Vol 31 (9-10) ◽  
pp. 518-523 ◽  
Author(s):  
B Hingerty ◽  
E Kulikowska ◽  
W Saenger ◽  
D Shugar

Abstract X-ray diffraction methods have been employed to establish the crystal structure of a new, unusual pyrimidine analogue, 5-ethylidenehydroorotate, obtained by a photochemical rearrangement of 5-ethylorotate. Crystals of the calcium salt of the title compound are monoclinic, space group Pc, cell constants a=14.631, 6 = 10.038, c = 19.168 Å,β = 137.7°, and contain four molecules, two cations and three water molecules per asymmetric unit. The structure was solved by direct methods and refined to R = 5.2% on the basis of 2653 diffractometer measured data. The four independent molecules represent two pairs of enantiomers with slightly differing conformations linked together by an intricate system of hydrogen bonding and Ca2+-coordination (pentagonal bipyrimidal). The structure of the compound in aqueous medium, as that in the crystal.


2008 ◽  
Vol 3 (2) ◽  
pp. 119-121
Author(s):  
Diana Dragancea ◽  
Vladimir B. Arion ◽  
Sergiu Shova

The new ligand, bis(2-hydroxybenzaldehyde)diaminoguanizone (1) has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3), b = 10.0357(3), c = 19.7618(6) Å, β = 98.385(2)°, Z = 4, V = 1748.21(9) Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.


2015 ◽  
Vol 79 (3) ◽  
pp. 687-694 ◽  
Author(s):  
L. Bindi ◽  
F. Nestola ◽  
S. Graeser ◽  
P. Tropper ◽  
T. Raber

AbstractEckerite, ideally Ag2CuAsS3, is a new mineral from the Lengenbach quarry in the Binn Valley, Valais, Switzerland. It occurs as very rare euhedral crystals up to 300 μm across associated with realgar, sinnerite, hatchite, trechmannite and yellow, fibrous smithite. In thick section eckerite is opaque with a metallic lustre and shows a dark orange-red streak. It is brittle; the Vickers hardness (VHN25) is 70 kg/mm2 (range: 64–78) (Mohs hardness of ∼2½–3). In reflected light, eckerite is moderately bireflectant and weakly pleochroic from light grey to a slightly bluish grey. Internal reflections are absent. Under crossed nicols, it is weakly anisotropic with greyish to light blue rotation tints. Reflectance percentages for Rmin and Rmax are 27.6, 31.7 (471.1 nm), 22.8, 26.1 (548.3 nm), 21.5, 24.5 (586.6 nm) and 19.4, 22.3 (652.3 nm), respectively.Eckerite is monoclinic, space group C2/c, with a = 11.8643(3), b = 6.2338(1), c = 16.6785(4) Å, β = 110.842(3)°, V = 1152.81(5) Å3, Z = 8. The crystal structure [R1 = 0.0769 for 1606 reflections with Fo > 4σ(Fo)] is topologically identical to that of xanthoconite and pyrostilpnite. In the structure, AsS3 pyramids are joined by AgS3 triangles to form double sheets parallel to (001); the sheets are linked by Cu(Ag) atoms in a quasi-tetrahedral coordination. Among the three metals sites, Ag2 is dominated by Cu. The mean metal–S distances reflect well the Ag ↔ Cu substitution occurring at this site.The eight strongest powder X-ray diffraction lines [d in Å (I/I0) (hkl)] are: 3.336 (70) (312); 2.941 (100) (314,114); 2.776 (80) (400,206); 2.677 (40) (312); 2.134 (50) (421); 2.084 (40) (208,206); 2.076 (40) (420); 1.738 (40) (228,226). A mean of five electron microprobe analyses gave Ag 52.08(16), Cu 11.18(9), Pb 0.04(1), Sb 0.29(3), As 15.28(11), S 20.73(13), total 99.60 wt.%, corresponding, on the basis of a total of 7 atoms per formula unit, to Ag2.24Cu0.82As0.94Sb0.01S2.99. The new mineral has been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (2014–063) and named for Markus Ecker, a well known mineral expert on the Lengenbach minerals for more than 25 years.


1995 ◽  
Vol 50 (7) ◽  
pp. 1025-1029 ◽  
Author(s):  
J. Baurmeister ◽  
A. Franken ◽  
W. Preetz

By reaction of [N(C4H9 )4]2 [B6H6] with iodomethyl-trimethylsilane in acetonitrile a solution with trimethylsilylm ethyl-closo-hexaborate(1-)anions, [B6H6 (CH2Si(CH3)3)]-, is formed. The crystal structure of [P(C6H5 )4][B6H6(CH2Si(CH3)3)] has been determined by single crystal X-ray diffraction analysis; monoclinic, space group P21/n with a = 16.140(2), b = 11.646(8), c = 16.731(3) Å, β 109.664(11)°. The 11B NMR spectrum reveals features of a mono hetero substituted octahedral B6 cage. The 13C NMR spectrum exhibits a quartet at +0.18 ppm with 1J(C,H) = 118 Hz for the three methyl groups and a weak multiplet at -0.65 ppm for the methylene bridge due to quadrupole coupling with the boron atoms. In the 29Si NMR spectrum a decet at +2.25 ppm with 2J(C,H ) = 6.9 Hz is observed. The B -C stretching vibration is observed at 1155 cm-1 in the IR and Raman spectrum.


2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


1995 ◽  
Vol 48 (4) ◽  
pp. 793 ◽  
Author(s):  
LT Ellis ◽  
HM Er ◽  
TW Hambley

The electrochemical reduction and DNA binding have been studied for a series of platinum(IV) complexes with Cl-, OH-, and carboxylate anions as the axial ligands ; [Pt(en)Cl4], [Pt(en)Cl2(OH)2], and [Pt(en)Cl2(OC(O)R)2], R = CH3, CH2CH3, CH2CH2CH3. Cathodic reduction potentials vary by more than 650 mV with the tetrachloro complex reduced most readily and the dihydroxo least readily. The binding of the complexes correlates with the reduction potentials with the more readily reduced complexes binding more readily to DNA. The influence of the reducing agent glutathione on platinum binding to DNA was found to depend on whether it was added before or after Pt/DNA incubation. The results are consistent with octahedral platinum(IV) binding monofunctionally to DNA, and molecular modelling studies have been used to confirm that this is sterically feasible. The crystal structure of [Pt(en)Cl2(OC(O)CH3)2] has been determined by X-ray diffraction methods and refined to R = 0.028 (977 F). The crystals are monoclinic, space group C2/c, a 15.569(6), b 8.104(1), c 13.188(1) Ǻ, β 136.38(2)°.


Author(s):  
Rongqing Shang ◽  
An T. Nguyen ◽  
Allan He ◽  
Susan M. Kauzlarich

A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1−)(1b – Sb2−)2(2b – Sb1−)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6−, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.


Sign in / Sign up

Export Citation Format

Share Document