strong coulomb
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 22)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Ganiyu Debo Adebanjo ◽  
Pavel Kornilovitch ◽  
James Peter Hague

Abstract The majority of fulleride superconductors with unusually high transition-temperature to kinetic-energy ratios have a face-centred-cubic (FCC) structure. We demonstrate that, within extended Hubbard models with strong Coulomb repulsion, paired fermions in FCC lattices have qualitatively different properties than pairs in other three-dimensional cubic lattices. Our results show that strongly bound, light, and small pairs can be generated in FCC lattices across a wide range of the parameter space. We estimate that such pairs can Bose condense at high temperatures even if thelattice constant is large (as in the fullerides).


2022 ◽  
Vol 64 (1) ◽  
pp. 139
Author(s):  
В.Е. Бисти

The photoluminescence spectrum from the two-dimensional low density electrons with the localized valence-band holes in magnetic field is studied. The ground state is considered as Wigner crystal ore the strongly correlated electron system. For the quantum Wigner crystal the Landau levels for vacancions (quasiholes appearing in the process of photoluminescence) are calculated in the quasiclassical approximation. The spectrum of single-particle excitations for a triangular lattice in the nearest-neighbor approximation is used. It is found that Landau levels for vacancions depend unusually on magnetic field. For the electron system with strong Coulomb interaction the Mahan exciton effect in the photoluminescence for the two-dimensional electrons in magnetic field is considered.


2021 ◽  
Author(s):  
◽  
Stephanie Droste

<p>Nanostructures with quantum dots in proximity to superconducting electrodes are an ideal tool to study superconducting correlations in systems with few degrees of freedom that exhibit strong Coulomb-interaction effects. Such hybrid superconductor-normal structures show rich physics due to the interplay of superconductivity, Coulomb interaction and non-equilibrium. Superconducting correlations are established on the quantum dot when it is coupled to a superconductor even in the presence of strong Coulomb repulsion and Cooper pairs can tunnel coherently between the quantum dot and the superconductor.  In this thesis, we investigate theoretically electronic transport through an interacting quantum dot coupled to normal and superconducting leads. The presence of the proximity effect can be detected by the dot's current, namely the Andreev current. However, current fluctuations might reveal information on the electronic transport and the internal structure of the system which is not visible in the mean value of the current. For this reason, we study the current fluctuations through the proximized quantum dot to get access to the properties of such a hybrid quantum-dot system. In particular, we are interested in the finite-frequency fluctuations to unveil the coherent dynamics underlying the proximity effect in the quantum dot and its internal time scales.  At first, we present a study of the frequency-dependent current noise for subgap transport through an interacting single-level quantum dot tunnel-coupled to normal and superconducting leads. For this purpose, we employ a non-equilibrium diagrammatic real-time approach to calculate the finite-frequency current noise. The finite-frequency noise spectrum shows a sharp dip at a frequency corresponding to the energy splitting of the Andreev bound states which is a signature of the coherent exchange of Cooper pairs between the quantum dot and the superconductor. Furthermore, in the high frequency regime, the so called quantum noise regime, the noise spectrum exhibits steps at frequencies equal to the excitation energies. These steps can be related to the effective coupling strength of the excitations.  However, the statistical description of the electron transport does not stop with the noise. Current cumulants of arbitrary order can be obtained by means of full counting statistics (FCS). We set up a theory based on the diagrammatic real-time approach to calculate the finite-time FCS for quantum transport with a non-Markovian master equation that captures the initial correlations between system and reservoir. This allows us to fully describe the current fluctuations of the hybrid quantum-dot system, that is the noise and all higher order current cumulants.</p>


2021 ◽  
Author(s):  
◽  
Stephanie Droste

<p>Nanostructures with quantum dots in proximity to superconducting electrodes are an ideal tool to study superconducting correlations in systems with few degrees of freedom that exhibit strong Coulomb-interaction effects. Such hybrid superconductor-normal structures show rich physics due to the interplay of superconductivity, Coulomb interaction and non-equilibrium. Superconducting correlations are established on the quantum dot when it is coupled to a superconductor even in the presence of strong Coulomb repulsion and Cooper pairs can tunnel coherently between the quantum dot and the superconductor.  In this thesis, we investigate theoretically electronic transport through an interacting quantum dot coupled to normal and superconducting leads. The presence of the proximity effect can be detected by the dot's current, namely the Andreev current. However, current fluctuations might reveal information on the electronic transport and the internal structure of the system which is not visible in the mean value of the current. For this reason, we study the current fluctuations through the proximized quantum dot to get access to the properties of such a hybrid quantum-dot system. In particular, we are interested in the finite-frequency fluctuations to unveil the coherent dynamics underlying the proximity effect in the quantum dot and its internal time scales.  At first, we present a study of the frequency-dependent current noise for subgap transport through an interacting single-level quantum dot tunnel-coupled to normal and superconducting leads. For this purpose, we employ a non-equilibrium diagrammatic real-time approach to calculate the finite-frequency current noise. The finite-frequency noise spectrum shows a sharp dip at a frequency corresponding to the energy splitting of the Andreev bound states which is a signature of the coherent exchange of Cooper pairs between the quantum dot and the superconductor. Furthermore, in the high frequency regime, the so called quantum noise regime, the noise spectrum exhibits steps at frequencies equal to the excitation energies. These steps can be related to the effective coupling strength of the excitations.  However, the statistical description of the electron transport does not stop with the noise. Current cumulants of arbitrary order can be obtained by means of full counting statistics (FCS). We set up a theory based on the diagrammatic real-time approach to calculate the finite-time FCS for quantum transport with a non-Markovian master equation that captures the initial correlations between system and reservoir. This allows us to fully describe the current fluctuations of the hybrid quantum-dot system, that is the noise and all higher order current cumulants.</p>


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5738
Author(s):  
Young-Ho Oh ◽  
Sungyul Lee

Quantum chemical analysis is presented, motivated by Grée and co-workers’ observation of salt effects [Adv. Synth. Catal. 2006, 348, 1149–1153] for SN2 fluorination of KF in ionic liquids (ILs). We examine the relative promoting capacity of KF in [bmim]PF6 vs. [bmim]Cl by comparing the activation barriers of the reaction in the two ILs. We also elucidate the origin of the experimentally observed additional rate acceleration in IL [bmim]PF6 achieved by adding KPF6. We find that the anion PF6- in the added salt acts as an extra Lewis base binding to the counter-cation K+ to alleviate the strong Coulomb attractive force on the nucleophile F-, decreasing the Gibbs free energy of activation as compared with that in its absence, which is in good agreement with experimental observations of rate enhancement. We also predict that using 2 eq. KF together with an eq. KPF6 would further activate SN2 fluorination.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Piotr Kapuściński ◽  
Alex Delhomme ◽  
Diana Vaclavkova ◽  
Artur O. Slobodeniuk ◽  
Magdalena Grzeszczyk ◽  
...  

AbstractStrong Coulomb correlations together with multi-valley electronic bands in the presence of spin-orbit interaction are at the heart of studies of the rich physics of excitons in monolayers of transition metal dichalcogenides (TMD). Those archetypes of two-dimensional systems promise a design of new optoelectronic devices. In intrinsic TMD monolayers the basic, intravalley excitons, are formed by a hole from the top of the valence band and an electron either from the lower or upper spin-orbit-split conduction band subbands: one of these excitons is optically active, the second one is dark, although possibly observed under special conditions. Here we demonstrate the s-series of Rydberg dark exciton states in tungsten diselenide monolayer, which appears in addition to a conventional bright exciton series in photoluminescence spectra measured in high in-plane magnetic fields. The comparison of energy ladders of bright and dark Rydberg excitons is shown to be a method to experimentally evaluate one of the missing band parameters in TMD monolayers: the amplitude of the spin-orbit splitting of the conduction band.


2021 ◽  
Author(s):  
Eilho Jung ◽  
Jin Cheol Park ◽  
Yu-Seong Seo ◽  
Ji-Hee Kim ◽  
Jungseek Hwang ◽  
...  

Abstract Although large exciton binding energies of typically 0.6–1.0 eV are observed for monolayer transition metal dichalcogenides (TMDs) owing to strong Coulomb interaction, multilayered TMDs yield relatively low exciton binding energies owing to increased dielectric screening. Recently, the ideal carrier-multiplication threshold energy of twice the bandgap has been realized in multilayered semiconducting 2H-MoTe2 with a conversion efficiency of 99%, which suggests strong Coulomb interaction. However, the origin of strong Coulomb interaction in multilayered 2H-MoTe2, including the exciton binding energy, has not been elucidated to date. In this study, unusually large exciton binding energy is observed through optical spectroscopy conducted on CVD-grown 2H-MoTe2. To extract exciton binding energy, the optical conductivity is fitted using the Lorentz model to describe the exciton peaks and the Tauc–Lorentz model to describe the indirect and direct bandgaps. The exciton binding energy of 4 nm thick multilayered 2H-MoTe2 is approximately 300 meV, which is unusually large by one order of magnitude when compared with other multilayered TMD semiconductors such as 2H-MoS2 or 2H-MoSe2. This finding is interpreted in terms of small exciton radius based on the 2D Rydberg model. The exciton radius of multilayered 2H-MoTe2 resembles that of monolayer 2H-MoTe2, whereas those of multilayered 2H-MoS2 and 2H-MoSe2 are large when compared with monolayer 2H-MoS2 and 2H-MoSe2. From the large exciton binding energy in multilayered 2H-MoTe2, it is expected to realize the future applications such as room-temperature and high-temperature polariton lasing.


2021 ◽  
Vol 256 ◽  
pp. 00018
Author(s):  
Takahiro Wada ◽  
Kazuki Okada ◽  
Nicolae Carjan ◽  
Fedir Ivanyuk

In super-heavy nuclei, we may expect to discover new phenomena because of the strong Coulomb force. One example is the true ternary fission. We study the sequential two binary fission of 300120 and 252Cf that produces three fragments. We use the Metropolis method to estimate the probability of the second fission. The probability of the second fission is 10−4-10−3 for superheavy nuclei while it is 10−7−10−6 for heavy actinide nuclei. The most probable mass division is almost symmetric in the case of 300120. We also demonstrate the applicability of the Metropolis method to a non-equilibrium process by comparing it with the Langevin equation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
T. P. Lyons ◽  
D. Gillard ◽  
A. Molina-Sánchez ◽  
A. Misra ◽  
F. Withers ◽  
...  

AbstractSemiconducting ferromagnet-nonmagnet interfaces in van der Waals heterostructures present a unique opportunity to investigate magnetic proximity interactions dependent upon a multitude of phenomena including valley and layer pseudospins, moiré periodicity, or exceptionally strong Coulomb binding. Here, we report a charge-state dependency of the magnetic proximity effects between MoSe2 and CrBr3 in photoluminescence, whereby the valley polarization of the MoSe2 trion state conforms closely to the local CrBr3 magnetization, while the neutral exciton state remains insensitive to the ferromagnet. We attribute this to spin-dependent interlayer charge transfer occurring on timescales between the exciton and trion radiative lifetimes. Going further, we uncover by both the magneto-optical Kerr effect and photoluminescence a domain-like spatial topography of contrasting valley polarization, which we infer to be labyrinthine or otherwise highly intricate, with features smaller than 400 nm corresponding to our optical resolution. Our findings offer a unique insight into the interplay between short-lived valley excitons and spin-dependent interlayer tunneling, while also highlighting MoSe2 as a promising candidate to optically interface with exotic spin textures in van der Waals structures.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Youngjo Jin ◽  
Min-Kyu Joo ◽  
Byoung Hee Moon ◽  
Hyun Kim ◽  
Sanghyup Lee ◽  
...  

Abstract Two-dimensional (2D) heterostructures often provide extraordinary carrier transport as exemplified by superconductivity or excitonic superfluidity. Recently, a double-layer graphene (Gr) separated by few-layered boron nitride demonstrated the Coulomb drag phenomenon: carriers in the active layer drag carriers in the passive layer. Here, we propose high-performance Gr/MoS2 heterostructure transistors operating via Coulomb drag, exhibiting a high carrier mobility (∼3700 cm2 V−1 s−1) and on/off-current ratio (∼108) at room temperature. The van der Waals gap at the Gr/MoS2 interface induces strong interactions between the interlayer carriers, whose recombination is suppressed by the Schottky barrier between p-Gr and n-MoS2, clearly distinct from the presence of insulating layers. The sign reversal of lateral voltage clearly demonstrates the Coulomb drag in carrier transport. Hole-like behavior of electrons in the n-MoS2 is observed in magnetic field, indicating strong Coulomb drag at low temperature. Our Coulomb drag transistor thus provides a shortcut for the practical application of 2D heterostructures.


Sign in / Sign up

Export Citation Format

Share Document