coupling frequency
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Anbin Yu ◽  
Yinglong Zhao ◽  
Youqian Wang ◽  
Ben Zhang

Based on the Flügge theory and orthotropic theory, the acoustic vibration coupling model of ring-stiffened cylindrical shell is established by using the wave propagation method and virtual source method. And the effects of water immersion on both sides, free surface, and hydrostatic pressure on the cylindrical shell are considered in the coupling model. Muller three-point iterative method is used to solve the coupling frequency. The calculation results of degradation theory are compared with COMSOL’s calculation results and experimental results, respectively, which verifies the reliability of the theoretical method. Finally, the influence of fluid load, ring rib parameters, boundary conditions, hydrostatic pressure, and free surface on the coupled vibration of ring-stiffened cylindrical shell is analyzed by an example.



2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenqiang Yan ◽  
Guanghua Xu

AbstractObjectivesThe best frequency response band for the steady-state visual evoked potential (SSVEP) stimulus for humans is limited. This results in a reduced number of encoded targets.MethodsTo circumvent these limitations, we propose a motion-coupled, steady-state motion visual evoked potential (SSMVEP) method. We designed a stimulus paradigm that couples both sinusoidal and square wave motions. The paradigm performs a spiral motion with a higher frequency in the form of sinusoidal wave, and alters the size of the lower frequency via the square wave form.ResultsThe motion-coupled SSMVEP method could simultaneously induce stable motion frequency and coupling frequency, and there was no loss of frequency component.ConclusionsThe proposed method has been evaluated to have substantial potential for increasing the number of coding targets, which is an effective supplement to the existing studies.



2020 ◽  
Vol 54 (11-12) ◽  
pp. 4935-4952
Author(s):  
Yue Li ◽  
Alex Sen Gupta ◽  
Andréa S. Taschetto ◽  
Nicolas C. Jourdain ◽  
Alejandro Di Luca ◽  
...  








2017 ◽  
Vol 818 ◽  
pp. 528-561 ◽  
Author(s):  
Chuanqiang Gao ◽  
Weiwei Zhang ◽  
Xintao Li ◽  
Yilang Liu ◽  
Jingge Quan ◽  
...  

Frequency lock-in can occur on a spring suspended airfoil in transonic buffeting flow, in which the coupling frequency does not follow the buffet frequency but locks onto the natural frequency of the elastic airfoil. Most researchers have attributed this abnormal phenomenon to resonance. However, this interpretation failed to reveal the root cause. In this paper, the physical mechanism of frequency lock-in is studied by a linear dynamic model, combined with the coupled computational fluid dynamics/computational structural dynamics (CFD/CSD) simulation. We build a reduced-order model of the flow using the identification method and unsteady Reynolds-averaged Navier–Stokes computations in a post-buffet state. A linear aeroelastic model is then obtained by coupling this model with a degree-of-freedom equation for the pitching motion. Results from the complex eigenvalue analysis indicate that the coupling between the structural mode and the fluid mode leads to the instability of the structural mode. The instability range coincides with the lock-in region obtained by the coupled CFD/CSD simulation. Therefore, the physical mechanism underlying frequency lock-in is caused by the linear coupled-mode flutter – the coupling between one structural mode and one fluid mode. This is different from the classical single-degree-of-freedom flutter (e.g. transonic buzz), which occurs in stable flows; the present flutter is in the unstable buffet flow. The response of the airfoil system undergoes a conversion from forced vibration to self-sustained flutter. The coupling frequency certainly should lock onto the natural frequency of the elastic airfoil.



2017 ◽  
Vol 30 (1) ◽  
pp. 145-162 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Pier Giuseppe Fogli ◽  
Kevin A. Reed ◽  
Silvio Gualdi ◽  
Simona Masina ◽  
...  

Through tropical cyclone (TC) activity the ocean and the atmosphere exchange a large amount of energy. In this work possible improvements introduced by a higher coupling frequency are tested between the two components of a climate model in the representation of TC intensity and TC–ocean feedbacks. The analysis is based on the new Centro Euro-Mediterraneo per I Cambiamenti Climatici Climate Model (CMCC-CM2-VHR), capable of representing realistic TCs up to category-5 storms. A significant role of the negative sea surface temperature (SST) feedback, leading to a weakening of the cyclone intensity, is made apparent by the improved representation of high-frequency coupled processes. The first part of this study demonstrates that a more realistic representation of strong TC count is obtained by coupling atmosphere and ocean components at hourly instead of daily frequency. Coherently, the positive bias of the annually averaged power dissipation index associated with TCs is reduced by one order of magnitude when coupling at the hourly frequency, compared to both forced mode and daily coupling frequency results. The second part of this work shows a case study (a modeled category-5 typhoon) analysis to verify the impact of a more realistic representation of the high-frequency coupling in representing the TC effect on the ocean; the theoretical subsurface warming induced by TCs is well represented when coupling the two components at the higher frequency. This work demonstrates that an increased horizontal resolution of model components is not sufficient to ensure a realistic representation of intense and fast-moving systems, such as tropical and extratropical cyclones, but a concurrent increase in coupling frequency is required.



2016 ◽  
Vol 9 (3) ◽  
pp. 1125-1141 ◽  
Author(s):  
Alex E. West ◽  
Alison J. McLaren ◽  
Helene T. Hewitt ◽  
Martin J. Best

Abstract. In fully coupled climate models, it is now normal to include a sea ice component with multiple layers, each having their own temperature. When coupling this component to an atmosphere model, it is more common for surface variables to be calculated in the sea ice component of the model, the equivalent of placing an interface immediately above the surface. This study uses a one-dimensional (1-D) version of the Los Alamos sea ice model (CICE) thermodynamic solver and the Met Office atmospheric surface exchange solver (JULES) to compare this method with that of allowing the surface variables to be calculated instead in the atmosphere, the equivalent of placing an interface immediately below the surface. The model is forced with a sensible heat flux derived from a sinusoidally varying near-surface air temperature. The two coupling methods are tested first with a 1 h coupling frequency, and then a 3 h coupling frequency, both commonly used. With an above-surface interface, the resulting surface temperature and flux cycles contain large phase and amplitude errors, and have a very blocky shape. The simulation of both quantities is greatly improved when the interface is instead placed within the top ice layer, allowing surface variables to be calculated on the shorter timescale of the atmosphere. There is also an unexpected slight improvement in the simulation of the top-layer ice temperature by the ice model. The surface flux improvement remains when a snow layer is added to the ice, and when the wind speed is increased. The study concludes with a discussion of the implications of these results to three-dimensional modelling. An appendix examines the stability of the alternative method of coupling under various physically realistic scenarios.



Sign in / Sign up

Export Citation Format

Share Document