lake lugu
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

The Holocene ◽  
2020 ◽  
pp. 095968362097277
Author(s):  
Xiaonan Zhang ◽  
Hucai Zhang ◽  
Fengqin Chang ◽  
Umar Ashraf ◽  
Han Wu ◽  
...  

Changes in moisture conditions or precipitation in the SE Tibetan Plateau during the Holocene have been studied using various environmental archives and proxies. However, due to different interpretations of the proxies and records, the pattern of Holocene precipitation/moisture variations in the region remains unclear. A lake-sediment-based reconstruction of runoff variations, which can directly and sensitively reflect changes in precipitation, provides the opportunity to reconstruct the evolution of moisture conditions in the SE Tibetan Plateau during the Holocene. In this study, we used a well-dated sediment core (LGH2) from Lake Lugu, a deep alpine lake charged mainly by precipitation on the lake surface and by runoff from the watershed, to reconstruct variations in runoff during the Holocene. In addition, 70 lake surface sediment samples were collected to examine the spatial variation of grain size. Endmember modeling analysis of the grain-size data was used to characterize the processes of sediment transport and runoff fluctuations. The carbonate content of core LGH2 shows that the lake level was generally high during 11,600–3100 cal years BP, and that the lake basin was closed after 3100 cal years BP and semi-closed since 90 cal years BP. Grain-size endmember EM 3, which represents the runoff input clastic materials, is used to reconstruct runoff fluctuations in the Lake Lugu watershed. The record indicates a gradual increase in runoff during 11,600–9000 cal years BP, stable and high runoff during 9000–2000 cal years BP, and weak runoff and a low lake level since 2000 cal years BP. Our reconstruction of runoff fluctuations tracks changes in regional temperature and tropical SSTs rather than in boreal summer insolation. This finding supports the hypothesis that increasing tropical SSTs strengthened ITCZ convection which enhanced the flux of water vapour from the ocean to the air, and hence the moisture supplies to SW China.


2020 ◽  
Vol 46 (5) ◽  
pp. 1099-1112 ◽  
Author(s):  
Robert Wiese ◽  
Catharina Clewing ◽  
Christian Albrecht ◽  
Carolin Rabethge ◽  
Hucai Zhang ◽  
...  
Keyword(s):  

2019 ◽  
Vol 41 (5) ◽  
pp. 771-785 ◽  
Author(s):  
Qian Wang ◽  
Paul B Hamilton ◽  
Giri Kattel ◽  
Lingyang Kong

Abstract Multiple biogeochemical variables in a sediment core from Lake Lugu in southwest China were studied to investigate the effects of regional environmental changes on the ecosystem. Subfossil Cladocera, together with diatom, pollen and geochemical records, were used to examine climate-induced changes in lake ecosystem since the Last Glacial Maximum (30 000–0 cal year BP). Consistency among these biological records indicates that the succession of zooplankton, algae and vegetation changed in response to direct and indirect climatic factors. Alterations in the nutrient supply mediated by climate-induced changes in vegetation and soil processes are likely responsible for the variability of cladocerans. During the Last Glacial Maximum, cladocerans were dominated by littoral taxa (e.g. Alona), indicating an unproductive and oligotrophic lake system. A peak distribution in the pelagic Bosmina highlights the period of increased nutrient availability at 11 500 cal year BP. The ecological changes in Cladocera at 19 000 cal year BP and diatom communities at 18 000 cal year BP reveal independent and indirect responses to nutrient and light conditions induced by solar radiation and increased monsoon intensity across the study region. The palaeoecological archives from Lake Lugu sediments highlight a complex lake ecosystem influenced by both direct and indirect changes corresponding to climate changes and shifts in regional anthropogenic pressure over the last 30 000 years.


2016 ◽  
Vol 86 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Qian Wang ◽  
Xiangdong Yang ◽  
Nicholas John Anderson ◽  
Xuhui Dong

AbstractThe reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climateediatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake’s thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climateecatchmentevegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.


2016 ◽  
Vol 55 (3) ◽  
pp. 259-271 ◽  
Author(s):  
Yongdong Zhang ◽  
Yaling Su ◽  
Zhengwen Liu ◽  
Xiangchao Chen ◽  
Jinlei Yu ◽  
...  

2015 ◽  
Vol 47 (3) ◽  
pp. 461-472 ◽  
Author(s):  
Qian Wang ◽  
Xiangdong Yang ◽  
N. John Anderson ◽  
Junfeng Ji

Sign in / Sign up

Export Citation Format

Share Document