guadiana estuary
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 11)

H-INDEX

18
(FIVE YEARS 2)

Ocean Science ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1605-1621
Author(s):  
Erwan Garel ◽  
Ping Zhang ◽  
Huayang Cai

Abstract. Observations indicate that the fortnightly fluctuations in the mean amplitude of water level increase in the upstream direction along the lower half of a tide-dominated estuary (the Guadiana Estuary), with negligible river discharge, but remain constant upstream. Analytical solutions reproducing the semi-diurnal wave propagation shows that this pattern results from reflection effects at the estuary head. The phase difference between velocity and elevation increases from the mouth to the head (where the wave has a standing nature) as the timing of high and low water levels come progressively closer to slack water. Thus, the tidal (flood–ebb) asymmetry in discharge is reduced in the upstream direction. It becomes negligible along the upper estuary half as the mean sea level remains constant despite increased friction due to wave shoaling. Observations of a flat mean water level along a significant portion of an upper estuary suggest a standing wave character and, thus, indicate significant reflection of the propagating semi-diurnal wave at the head. Details of the analytical model show that changes in the mean depth or length of semi-arid estuaries, in particular for macrotidal locations, affect the fortnightly tide amplitude and, thus, the upstream mass transport and inundation regime. This has significant potential impacts on the estuarine environment in terms of ecosystem management.


2021 ◽  
Author(s):  
Erwan Garel ◽  
Ping Zhang ◽  
Huayang Cai

Abstract. Observations indicate that the fortnightly fluctuations in mean water level increase in amplitude along the lower half of a tide-dominated estuary (The Guadiana estuary) with negligible river discharge but remain constant upstream. Analytical solutions reproducing the semi-diurnal wave propagation shows that this pattern results from reflection effects at the estuary head. The phase difference between velocity and elevation increases from the mouth to the head (where the wave has a standing nature) as the high and low water levels get progressively closer to slack water. Thus, the tidal (flood-ebb) asymmetry in discharge is reduced in the upstream direction. It becomes negligible along the upper estuary half, as the mean sea level remains constant despite increased friction due to wave shoaling. Observations of a flat mean water level along a significant portion of an upper estuary, easier to obtain than the phase difference, can therefore indicate significant reflection of the propagating semi-diurnal wave at the head. Details of the analytical model shows that changes in the mean depth or length of semi-arid estuaries, in particular for macrotidal locations, affect the fortnightly tide amplitude, and thus the upstream mass transport and inundation regime. This has significant potential impacts on the estuarine environment.


Author(s):  
Lara Mills ◽  
João Janeiro ◽  
Flávio Martins

Abstract Sea level rise is a worldwide concern as a high percentage of the population accommodates coastal areas. The focus of this study is the impact of sea level rise in the Guadiana Estuary, an estuary in the Iberian Peninsula formed at the interface of the Guadiana River and the Gulf of Cadiz. Estuaries will be impacted by sea level rise as these transitional environments host highly diverse and complex marine ecosystems. The major consequences of sea level rise are the intrusion of salt from the sea into fresh water and an increase in flooding area. As the physical, chemical, and biological components of estuaries are sensitive to changes in salinity, the purpose of this study is to further evaluate salt intrusion in the Guadiana Estuary caused by sea level rise. Hydrodynamics of the Guadiana Estuary were simulated in a two-dimensional numerical model with the MOHID water modeling system. A previously developed hydrodynamic model was implemented to further examine changes in salinity distribution in the estuary in response to sea level rise. Varying tidal amplitudes, freshwater discharge from the Guadiana River and bathymetries of the estuary were incorporated in the model to fully evaluate the impacts of sea level rise on salinity distribution and flooding areas of the estuary. Results show an overall increase in salinity and land inundation in the estuary in response to sea level rise.


2020 ◽  
Vol 44 ◽  
pp. 101169 ◽  
Author(s):  
Lara Mills ◽  
João Janeiro ◽  
Antonio Augusto Sepp Neves ◽  
Flávio Martins

2020 ◽  
Vol 197 ◽  
pp. 104076 ◽  
Author(s):  
Mukesh Kumar ◽  
Tomasz Boski ◽  
Francisco J. González-Vila ◽  
Nicasio T. Jiménez-Morillo ◽  
José A. González-Pérez

Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 214 ◽  
Author(s):  
João Encarnação ◽  
Thomas Seyer ◽  
Maria Alexandra Teodósio ◽  
Francisco Leitão

The estuarine nudibranch Tenellia adspersa (Nordmann, 1845) was recorded for the first time in Portugal, while sampling for fouling fauna of artificial structures along the salinity gradient of the Guadiana estuary (SW Iberian Peninsula). Two specimens were found in association with the invasive hydrozoan Cordylophora caspia (Pallas, 1771) and kept in the laboratory for taxonomy purposes. After two days, batches of eggs were seen in C. caspia branches, while the nudibranchs were also actively feeding on the hydrozoan polyps. The fast generation times of T. adspersa, along with its food preference for C. caspia, might suggest a positive role of the nudibranch on controlling this invasive hydrozoan in the Guadiana estuary. Introduction routes and facilitation interactions are discussed.


2019 ◽  
Vol 7 (11) ◽  
pp. 393
Author(s):  
Juan A. Morales ◽  
Claudio Lozano ◽  
Mouncef Sedrati

The Guadiana estuary is a coastal system located in the southwest of the Iberian Peninsula and is the natural border between Portugal and Spain. It is a rock-bounded estuary which extends along more than 40 km and is characterized by a semidiurnal mesotidal regime. This paper represents an approach to the bedload transport across two flow sections located in the fluvial and marine domains. In the fluvial profile, the most frequent bedform is the plane bed. In the marine area the bed of the deep channel is composed of well-sorted sand, while a lateral bar displays partially cohesive sediments with dominant fine sands in a matrix of clayey silts. Data were acquired during spring and neap tides. Near-bottom water velocities were registered by an acoustic Doppler current profiler (ADCP). Density and bed rugosity were determined in sediment samples. These data were employed using Bagnold’s equation (1963) to quantify the potential bedload (Qb). Further, real bedload values (Sb) were obtained by using Poliakoff traps. The comparison of the results of Qb under both ebb and flood conditions demonstrated a clear river-to-sea net transport in both sectors. The values of Sb were lower than those of Qb in every condition. The sand input across the fluvial estuary cannot supply the potential bedload in the lower domain of the channel, thereby causing a deficit that explains this lack of agreement between potential and real transport.


2019 ◽  
Vol 146 ◽  
pp. 1-13 ◽  
Author(s):  
María Concepción Calero Quesada ◽  
Jesús García-Lafuente ◽  
Erwan Garel ◽  
Javier Delgado Cabello ◽  
Flávio Martins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document