nitropolycyclic aromatic hydrocarbons
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 6)

H-INDEX

21
(FIVE YEARS 1)

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 256
Author(s):  
Kazuichi Hayakawa ◽  
Ning Tang ◽  
Wanli Xing ◽  
Pham Kim Oanh ◽  
Akinori Hara ◽  
...  

PM2.5 (fine particles with diameters 2.5 micrometers and smaller) and PM>2.5 were separately collected in Kanazawa, Japan in every season, from the spring of 2017 to the winter of 2018, and nine polycyclic aromatic hydrocarbons (PAHs) and six nitropolycyclic aromatic hydrocarbons (NPAHs) were respectively determined using high-performance liquid chromatography (HPLC) with fluorescence and chemiluminescence detections. The atmospheric concentrations of both the PAHs and NPAHs showed seasonal changes (highest in the winter and lowest in the summer), which differed from the variations in the total suspended particulate matter (TSP) and PM2.5 amounts (which were highest in the spring). The contributions of major sources to the combustion-derived particulate (Pc) in the PM2.5 were calculated using the 1-nitropyrene-pyrene (NP) method, using pyrene and 1-nitropyrene as the representative markers of PAHs and NPAHs, respectively. The annual average concentration of Pc accounted for only 2.1% of PM2.5, but showed the same seasonal variation as PAHs. The sources of Pc were vehicles (31%) and coal heating facilities/industries (69%). A backward trajectory analysis showed that the vehicle-derived Pc was mainly from Kanazawa and its surroundings, and that coal heating facilities/industry-derived Pc was transported from city areas in central and northern China in the winter, and during the Asian dust event in the spring. These results show that large amounts of PAHs were transported over a long range from China during the winter. Even in the spring, after the coal heating season was over in China, PAHs were still transported to Japan after Asian dust storms passed through Chinese city areas. By contrast, the main contributors of NPAHs were vehicles in Kanazawa and its surroundings. The recent Pc concentrations were much lower than those in 1999. This decrease was mostly attributed to the decrease in the contribution of vehicle emissions. Thus, the changes in the atmospheric concentrations of Pc, PAHs and NPAHs in Kanazawa were strongly affected not only by the local emissions but also by long-range transport from China.


Author(s):  
Kazuichi Hayakawa ◽  
Ning Tang ◽  
Wanli Xing ◽  
Pham Kim Oanh ◽  
Akinori Hara ◽  
...  

PM2.5 and PM>2.5 were separately collected in Kanazawa, Japan in every season from the spring of 2017 to the winter of 2018, and nine polycyclic aromatic hydrocarbons (PAHs) and six nitropolycyclic aromatic hydrocarbons (NPAHs) were determined by HPLC with fluorescence and chemiluminescence detections, respectively. Atmospheric concentrations of both PAHs and NPAHs showed seasonal changes (highest in the winter and lowest in the summer), which were different from the variations of TSP and PM2.5 (highest in the spring). Contributions of major sources to combustion-derived particulate (Pc) in PM2.5 were calculated by the NP-method using pyrene and 1-nitropyrene as representative markers of PAHs and NPAHs, respectively. The annual average concentration of Pc accounted for only 2.1% of PM2.5, but showed the same seasonal variation as PAHs. The sources of Pc were automobiles (31%) and coal heating facilities/industries (69%). The source of Pyr was almost entirely coal heating facilities/industries (98%). A backward trajectory analysis showed that automobile-derived Pc was mainly from Kanazawa and its surroundings and that coal heating facilities-derived Pc was transported from city areas in central and northern China in the winter and during the Asian dust event in the spring. These results show that large amounts of PAHs were long-range transported from China in the winter. Even in spring when the coal heating season was over in China, PAHs came over to Japan after Asian dust storms passed through Chinese city areas. The main contributor of NPAHs was automobiles in Kanazawa and its surroundings. The recent Pc concentrations were much lower than those in 1999. This decrease was mostly attributed to the decrease in the contribution of automobiles. Thus, changes of atmospheric concentrations of Pc, PAHs and NPAHs in Kanazawa were strongly affected not only by the local emissions but also long-range transport from China.


Author(s):  
Kazuichi Hayakawa ◽  
Ning Tang ◽  
Edward Nagato ◽  
Akira Toriba ◽  
Jin-Min Lin ◽  
...  

Total suspended particulate matter (TSP) was collected during the summer and winter in five cities in China (Shenyang, Beijing, and Shanghai), Russia (Vladivostok), and Korea (Busan) from 1997 to 2014. Nine polycyclic aromatic hydrocarbons (PAHs) with four to six rings, including pyrene (Pyr) and benzo[a]pyrene (BaP), were determined using high-performance liquid chromatography with fluorescence detection. Two nitropolycyclic aromatic hydrocarbons (NPAHs), 1-nitropyrene (1-NP) and 6-nitrobenzo[a]pyrene (6-NBaP), were also determined using high-performance liquid chromatography with online reduction/chemiluminescence detection. Two Chinese cities, Beijing and Shenyang, showed very high concentrations of total PAHs (ΣPAH) and total NPAHs (ΣNPAH) with a large seasonal difference (winter > summer), although the concentrations decreased over time. In both cities, maximum mean concentrations of ΣPAH over 200 ng m−3 were observed in the winter. In Beijing, an increase in the ΣPAH concentration was observed in the winter of 2010, which was after the 2008 Beijing Olympic Games. The [1-NP]/[Pyr] ratio, a diagnostic parameter for source, was smaller in the winter than in the summer over the monitoring period, suggesting a large contribution of coal heating systems in the winter. In Vladivostok, concentrations of ΣPAH and ΣNPAH were lower than in the above two Chinese cities. The [1-NP]/[Pyr] ratio was larger than in the above Chinese cities even in the winter, suggesting that the contribution of coal combustion facilities, such as power plants for heating, was not very large. In Shanghai and Busan, concentrations of ΣPAH and ΣNPAH were much lower than in the above three cities. At the beginning of the monitoring periods, the [1-NP]/[Pyr] ratios, which were as large as those of Japanese commercial cities, suggested a large contribution from automobiles. After that, the contribution of automobiles decreased gradually. However, BaP concentrations were still over 1 ng m−3 in all cities monitored in China, Russia, and Korea, suggesting that the urban air pollution of PAHs and NPAHs in these regions should not be ignored.


Sign in / Sign up

Export Citation Format

Share Document