Cytogenetic Behavior of Trigeneric Hybrid Progeny Involving Wheat, Rye and Psathyrostachys huashanica

2016 ◽  
Vol 148 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Hou-Yang Kang ◽  
Juan Huang ◽  
Wei Zhu ◽  
Dai-Yan Li ◽  
Cheng-Dou Diao ◽  
...  

Trigeneric hybrids are commonly used as bridges to transfer genes from some wild species to cultivated wheat and to measure the genomic interaction between donor species. We previously reported that trigeneric germplasms were produced by crossing wheat-Psathyrostachys huashanica amphiploids (PHW-SA, 2n = 8x = 56, AABBDDNsNs) with hexaploid triticale (Zhongsi 828, 2n = 6x = 42, AABBRR). In the present study, chromosome pairing behavior and the genome constitution of the F4 progenies of wheat-rye-P. huashanica trigeneric hybrids were studied. Cytological analysis showed that the chromosome number of F4 progenies ranged from 39 to 46, and 57.5% of them had 42 chromosomes. The mean meiotic configuration of F4 lines was 1.71 univalents, 20.26 bivalents, 0.04 trivalents, and 0.001 quadrivalents per pollen mother cell. Among the lines with 2n = 42, the average pairing configuration was 1.21 univalents, 16.22 ring bivalents, 4.16 rod bivalents, and 0.01 trivalents. This result indicated that these lines were cytologically stable. Other lines with 2n = 39, 40, 41, 43, 44, 45, and 46, bearing a high number of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization (GISH) revealed that all F4 lines had 11-14 rye chromosomes, but no P. huashanica chromosomes. The complete set of 14 rye chromosomes was found in 19 lines. At meiosis, GISH detected 1-6 univalents with hybridization signals of rye in 13 lines. Bivalents with fluorescence signals were identified in each line, ranging from 3 to 7. A quadrivalent with hybridization signals was observed in only 1 line, K13-714-8. Lagging chromosomes, chromosome bridges, micronuclei, and chromosome fragments hybridizing with the probe were not discovered in any of the lines. These results inferred that the behavior of rye chromosomes was normal during meiosis. In addition, 21 lines of 2n = 42 (91.3%) with 12 or 14 rye chromosomes, always contained 6 or 7 bivalents bearing fluorescence signals. This suggested that the rye chromosomes exhibiting complete pairing in these lines were cytologically stable during meiosis and may therefore be considered as new hexaploid triticales. Thus, these lines might be potential materials for further hexaploid triticale improvement.

Genome ◽  
2012 ◽  
Vol 55 (5) ◽  
pp. 383-390 ◽  
Author(s):  
Houyang Kang ◽  
Jian Zeng ◽  
Quan Xie ◽  
Shan Tao ◽  
Meiyu Zhong ◽  
...  

Trigeneric hybrids offer opportunities to transfer alien traits into cultivated wheat. In this study, a new trigeneric hybrid involving species of Triticum , Psathyrostachys , and Thinopyrum was synthesized by crossing Triticum aestivum L. (wheat) – Thinopyrum intermedium (Host) Barkworth & D.R. Dewey amphiploid Zhong 3 with wheat – Psathyrostachys huashanica Keng ex Kuo amphiploid PHW-SA. Crossability of the two amphiploids was 19.74%, and the fertility of the hybrid was 16.20%. The mean meiotic configuration of the trigeneric hybrid (2n = 56) was 13.06 I + 17.24 IIring + 3.73 IIrod + 0.28 III + 0.04 IV. GISH analysis indicated that the trigeneric F1 had seven P. huashanica chromosomes and seven Th. intermedium chromosomes. The mean chromosome numbers of F2, F3, and F4 progenies were 2n = 49.24, 2n = 48.13, and 2n = 46.78, respectively, a gradual decrease. GISH analysis revealed that most F2 and F3 plants had 2–10 Th. intermedium chromosomes and 0–4 P. huashanica chromosomes. In the F4 progenies, 1–7 Th. intermedium chromosomes were labeled, but no P. huashanica chromosomes were detected. It seems that Th. intermedium chromosomes are more likely than P. huashanica chromosomes to be transmitted to the progenies. The stripe rust response of PHW-SA was expressed in the F1 and some F2 and F3 progenies. The trigeneric hybrid could be a useful bridge for transfering P. huashanica and Th. intermedium chromosomes to common wheat.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Ying Chen ◽  
Biran Gong ◽  
Ling Xi ◽  
Lin Tang ◽  
Wei Zhu ◽  
...  

2019 ◽  
Vol 56 (2) ◽  
pp. 150-158
Author(s):  
Michał T. Kwiatek ◽  
Zofia Banaszak ◽  
Roksana Skowrońska ◽  
Danuta Kurasiak-Popowska ◽  
Sylwia Mikołajczyk ◽  
...  

AbstractInduction of androgenesis, followed by chromosome doubling, is a crucial method to obtain complete homozygosity in one-generation route. However, in vitro androgenesis can result in various genetic and epigenetic changes in derived triticale plants. In this study, we evaluated chromosome alternations and we associated them with the changes of spike morphology in androgenic progeny of triticale. We karyotyped offspring plants that derived from double haploid plants using fluorescence in situ hybridization techniques. We distinguished four major groups of karyotypes: double ditelosomics, nullisomics N2R, nullisomics N5R, and triticale plants with a complete set of chromosomes. It is known that more than half of QTLs connected with androgenic response are located in R-genome of triticale but 2R, 5R, and 6R chromosomes are not included. We hypothesized that the reason why only aberrations of chromosomes 2R and 5R appear during androgenesis of triticale is that because these chromosomes are not involved in the stimulation of androgenic response and the following regeneration of plants is not disrupted. Concerning the established groups, we evaluated following quantitative traits: spike length, number of spikes per plant, number of spikelets per spike, and number of grains per spike. The nullisomy of chromosome 2R and 5R resulted in vast changes in spike architecture of triticale plants, which can be correlated with the location of major QTLs for spike morphology traits on these chromosomes. The spikes of nullisomic plants had significantly decreased spike length which correlated with the reduction of number of spikelets per spike and number of grains per spike.


2020 ◽  
Vol 160 (1) ◽  
pp. 47-56
Author(s):  
Aybeniz J. Aliyeva ◽  
András Farkas ◽  
Naib Kh. Aminov ◽  
Klaudia Kruppa ◽  
Márta Molnár-Láng ◽  
...  

The chromosomal constitution of 9 dwarf (D) and 8 semidwarf (SD) lines derived by crossing hexaploid Triticale line NA-75 (AABBRR, 2n = 6x = 42) with Triticumaestivum (AABBDD, 2n = 6x = 42) cv. Chinese Spring was investigated using molecular cytogenetic techniques: fluorescence in situ hybridization and genomic in situ hybridization. A wheat-rye translocation (T4DS.7RL), 8 substitution lines, and a ditelosomic addition line (7RSdt) were identified. In the substitution lines, 1, 2, or 4 pairs of wheat chromosomes, belonging to the A, B, or D genome, were replaced by rye chromosomes. Substitutions between chromosomes belonging to different wheat genomes [5B(5A), 1D(1B)] also occurred. The lines were genetically stable, each carrying 42 chromosomes, except the wheat-rye ditelosomic addition line, which carried 21 pairs of wheat chromosomes and 1 pair of rye telocentric chromosomes (7RS). The chromosome pairing behavior of the lines was studied during metaphase I of meiosis. The chromosome pairing level and the number of ring bivalents were different for each line. Besides rod bivalents, univalent and multivalent associations (tri- and quadrivalents) were also detected. The main goal of the experiment was to develop genetically stable wheat/Triticale recombinant lines carrying chromosomes/chromatin fragments originating from the R genome of Triticale line NA-75. Introgression of rye genes into hexaploid wheat can broaden its genetic diversity, and the newly developed lines can be used in wheat breeding programs.


2014 ◽  
Vol 94 (8) ◽  
pp. 1441-1447
Author(s):  
Jing Wang ◽  
Wanli Du ◽  
Jun Wu ◽  
Xinhong Chen ◽  
Chanjuan Liu ◽  
...  

Wang, J., Du, W., Wu, J., Chen, X., Liu, C., Zhao, J., Yang, Q. and Li, F. 2014. Development of a specific SCAR marker for the Ns genome of Psathyrostachys huashanica Keng. Can. J. Plant Sci. 94: 1441–1447. Psathyrostachys huashanica Keng (2n=2x=14, NsNs) possesses many agronomically desirable traits that could be used in wheat improvement. We have previously produced a complete set of wheat–P. huashanica disomic addition lines (1Ns–7Ns, 2n=44=22 II). To track the addition of P. huashanica chromatin in wheat rapidly and effectively, a repetitive sequence of 1665 base pairs, designated pHs8, was isolated based on 21 different Triticeae species, including the parents’ common wheat cv. 7182 and P. huashanica, by RAPD analysis. The diagnostic fragments of the RAPD marker OPF151665 were cloned, sequenced, and converted into a sequence-characterized amplified region (SCAR) marker, known as RHS12. Southern hybridization using labeled pHs8 as probe showed intense hybridization signals on P. huashanica, but not on the other 20 species at all. RHS12 was validated using 21 different plant species and a complete set of wheat–P. huashanica disomic addition lines. Our results indicated that the SCAR marker targeted the Ns genome of P. huashanica and it was present in all seven P. huashanica chromosomes. The newly developed SCAR marker should help wheat breeders to screen for genotypes containing P. huashanica chromatin with low costs and high throughput.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
J. I. Raji ◽  
C. K. Onwuamah ◽  
P. G. C. Odeigah

Artemisinin-based combination therapy is used to treat uncomplicated malaria disease in most endemic countries. Although most antimalarial drugs are effective in killing the parasite, there is a concern of induced toxicity to the cell. Here, the cytogenotoxicity of dihydroartemisinin-piperaquine phosphate (DHAP), a coformulation for artemisinin-based combination therapy, was evaluated usingAllium cepamodel. The toxicity on the mitotic index varies with the duration of exposure and dose tested. Chromosome aberrations observed include chromosome fragments, chromosome bridges, binucleated cells, and micronucleated cells. This study showed that DHAP can depress mitosis and induce chromosome abnormalities. Their accumulation in cells may be inhibitory to cell division and growth. This calls for caution in the administration of artemisinin combination therapy for the treatment of malaria ailment. Wide spacing of dosage is therefore suggested in order to avoid the risk of genetic damage.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 1115-1124 ◽  
Author(s):  
Shuhei Nasuda ◽  
Bernd Friebe ◽  
Bikram S Gill

Abstract Male gametogenesis was cytologically analyzed in wheat lines homozygous or hemizygous for gametocidal (Gc) factors with different modes of action. The first and second meiotic divisions in all lines were cytologically normal. The postmeiotic mitoses were normal in the homozygous lines; however, chromosome fragments and bridges were observed in the mitoses of the hemizygous lines. The morphology of the chromosome fragments suggests that the Gc genes induce chromosome breaks in the G1 phase prior to DNA synthesis of the first postmeiotic mitosis. The age of an anther was correlated with the frequency of aberrant second mitosis. Younger anthers contained a higher number of pollen undergoing normal second mitosis. This observation suggests that the arresting of the cell cycle occurs as the result of chromosome breaks during the first mitosis. Because chromosome bridges were more frequent than fragments in the second mitosis, breakage-fusion-bridge cycles possibly occurred during gametogenesis, which led to further chromosomal rearrangements. The Gc factors located on chromosomes 2S of Aegilops speltoides and 4Ssh of Ae. sharonensis induce severe chromosome breakage in pollen lacking them. However, the Gc factor on telosome 2CcL of Ae. cylindrica only induced chromosome breaks at a low frequency. The observed partial fertility of Gc lines is presumably due to cell cycle arrest and the competition among gametes with and without chromosome breakage.


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0155667 ◽  
Author(s):  
Houyang Kang ◽  
Hao Wang ◽  
Juan Huang ◽  
Yujie Wang ◽  
Daiyan Li ◽  
...  

Genome ◽  
2017 ◽  
Vol 60 (5) ◽  
pp. 393-401 ◽  
Author(s):  
Hou-Yang Kang ◽  
Lin Tang ◽  
Dai-Yan Li ◽  
Cheng-Dou Diao ◽  
Wei Zhu ◽  
...  

To transfer multiple desirable alien genes into common wheat, we previously reported a new trigeneric hybrid synthesized by crossing a wheat – Thinopyrum intermedium partial amphiploid with wheat – Psathyrostachys huashanica amphiploid. Here, the meiotic behavior, chromosome constitution, and stripe rust resistance of F5 derivatives from the wheat – Th. intermedium – P. huashanica trigeneric hybrid were studied. Cytological analysis indicated the F5 progenies had chromosome numbers of 42–50 (average 44.96). The mean meiotic configuration was 1.28 univalents, 21.74 bivalents, 0.04 trivalents, and 0.02 tetravalents per pollen mother cell. In 2n = 42 lines, the average pairing configuration was 0.05 I + 19.91 II (ring) + 1.06 II (rod) + 0.003 IV, suggesting these lines were cytologically stable. Most lines with 2n = 43, 44, 46, 48, or 50, bearing a high frequency of univalents or multivalents, showed abnormal meiotic behavior. Genomic in situ hybridization karyotyping results revealed that 25 lines contained 1–7 Th. intermedium chromosomes, but no P. huashanica chromosomes were found among the 27 self-pollinated progenies. At meiosis, univalents (1–5) possessing Th. intermedium hybridization signals were detected in 19 lines. Bivalents (1–3) expressing fluorescence signals were observed in 12 lines. Importantly, 21 lines harbored wheat – Th. intermedium chromosomal translocations with various alien translocation types. Additionally, two homozygous lines, K13-668-10 and K13-682-12, possessed a pair of wheat – Th. intermedium small fragmental translocations. Compared with the recurrent parent Zhong 3, most lines showed high resistance to the stripe rust (Puccinia striiformis f. sp. tritici) pathogens prevalent in China, including race V26/Gui22. This paper reports a highly efficient technical method for inducing alien translocation between wheat and Th. intermedium by trigeneric hybridization. These lines might be potentially valuable germplasm resources for further wheat improvement.


Sign in / Sign up

Export Citation Format

Share Document