tumor immune microenvironment
Recently Published Documents





2022 ◽  
Vol 23 (1) ◽  
Yingqi Qiu ◽  
Hao Wang ◽  
Peiyun Liao ◽  
Binyan Xu ◽  
Rong Hu ◽  

Abstract Background Belonging to the protein arginine methyltransferase (PRMT) family, the enzyme encoded by coactivator associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of protein arginine residues, especially acts on histones and other chromatin related proteins, which is essential in regulating gene expression. Beyond its well-established involvement in the regulation of transcription, recent studies have revealed a novel role of CARM1 in tumorigenesis and development, but there is still a lack of systematic understanding of CARM1 in human cancers. An integrated analysis of CARM1 in pan-cancer may contribute to further explore its prognostic value and potential immunological function in tumor therapy. Results Based on systematic analysis of data in multiple databases, we firstly verified that CARM1 is highly expressed in most tumors compared with corresponding normal tissues, and is bound up with poor prognosis in some tumors. Subsequently, relevance between CARM1 expression level and tumor immune microenvironment is analyzed from the perspectives of tumor mutation burden, microsatellite instability, mismatch repair genes, methyltransferases genes, immune checkpoint genes and immune cells infiltration, indicating a potential relationship between CARM1 expression and tumor microenvironment. A gene enrichment analysis followed shortly, which implied that the role of CARM1 in tumor pathogenesis may be related to transcriptional imbalance and viral carcinogenesis. Conclusions Our first comprehensive bioinformatics analysis provides a broad molecular perspective on the role of CARM1 in various tumors, highlights its value in clinical prognosis and potential association with tumor immune microenvironment, which may furnish an immune based antitumor strategy to provide a reference for more accurate and personalized immunotherapy in the future.

2022 ◽  
Vol 2022 ◽  
pp. 1-17
Yongjie Zhou ◽  
Liangwen Wang ◽  
Wen Zhang ◽  
Jingqin Ma ◽  
Zihan Zhang ◽  

Purpose. The long noncoding RNAs (lncRNAs) play the important role in tumor occurrence and progression, and the epithelial to mesenchymal transition (EMT) is the critical process for tumor migration. However, the role of EMT-related lncRNA in hepatocellular carcinoma (HCC) has not been elucidated. Methods. In this study, we selected the EMT-related lncRNAs in HCC by using data from The Cancer Genome Atlas database (TCGA). Two prognostic models of the overall survival (OS) and relapse-free survival (RFS) were constructed and validated through Cox regression model, Kaplan-Meier analysis, and the receiver-operating characteristic (ROC) curves. The unsupervised clustering analysis was utilized to investigate the association between EMT-lncRNAs with tumor immune microenvironment. ESTIMATE algorithm and gene set enrichment analysis (GSEA) were used to estimate tumor microenvironment and associated KEGG pathways. Results. Two EMT-related lncRNA prognostic models of OS and RFS were constructed. Kaplan-Meier curves showed the dismal prognosis of OS and RFS in the group with high-risk score. The ROC curves and AUC values in two prognostic models indicated the discriminative value in the training set and validation set. Patients with HCC were clustered into two subgroups according the unsupervised clustering analysis. Lnc-CCNY-1 was selected as the key lncRNA. GSVA analysis showed that lnc-CCNY-1 was negatively associated with peroxisome proliferator-activated receptor (PPAR) signaling pathway and positively correlated with CELL cycle pathway. Conclusion. Two EMT-related lncRNA prognostic models of OS and RFS were constructed to discriminate patients and predict prognosis of HCC. EMT-related lncRNAs may play a role on prognosis of HCC by influencing the immune microenvironment. Lnc-CCNY-1 was selected as the key EMT-related lncRNA for further exploration.

2022 ◽  
Vol 6 (1) ◽  
Shuhang Wang ◽  
Pei Yuan ◽  
Beibei Mao ◽  
Ning Li ◽  
Jianming Ying ◽  

AbstractSeveral clinical trials have shown the safety and effectiveness of PD-1/PD-L1 inhibitors in neoadjuvant therapy in resectable non-small cell lung cancer (NSCLC). However, 18–83% patients can benefit from it. In this study, we aimed to assess the association of PD-L1 expression, tumor mutation burden, copy number alteration (CNA, including copy number gain and loss) burden with the pathologic response to neoadjuvant PD-1 blockade and investigate the changes in the tumor immune microenvironment (TIME) during neoadjuvant immunotherapy in NSCLC. Pre-immunotherapy treatment tumor samples from twenty-nine NSCLC patients who received neoadjuvant immunotherapy with sintilimab, an anti-PD-1 drug, were subjected to targeted DNA sequencing and PD-L1 immunochemistry staining. The pathological response was positively correlated with tumor proportion score (TPS) of PD-L1 and negatively correlated with copy number gain (CNgain) burden. Of note, the combination of CNgain burden and TPS can better stratify major pathological response (MPR) patients than did CNgain or TPS alone. Whereas, TMB showed a limited correlation with pathological regression. Additionally, PD-1 blockade led to an increase in CD8+PD-1−T cells which was clinically relevant to MPR as evaluated by multiplex immunofluorescence. A significant reduction in CD19+ cells was observed in the Non-MPR group but not in the MPR group, indicating the involvement of B cells in improving neoadjuvant immunotherapy response in NSCLC. Together, our study provides new data for the correlation of PD-L1 expression and genomic factors with drug response in neoadjuvant immunotherapy settings in NSCLC. The changes of TIME may provide novel insight into the immune responses to neoadjuvant anti-PD-1 therapy.

2022 ◽  
Vol 11 ◽  
Marc Cucurull ◽  
Lucia Notario ◽  
Montse Sanchez-Cespedes ◽  
Cinta Hierro ◽  
Anna Estival ◽  

Approximately 20% of lung adenocarcinomas harbor KRAS mutations, an oncogene that drives tumorigenesis and has the ability to alter the immune system and the tumor immune microenvironment. While KRAS was considered “undruggable” for decades, specific KRAS G12C covalent inhibitors have recently emerged, although their promising results are limited to a subset of patients. Several other drugs targeting KRAS activation and downstream signaling pathways are currently under investigation in early-phase clinical trials. In addition, KRAS mutations can co-exist with other mutations in significant genes in cancer (e.g., STK11 and KEAP1) which induces tumor heterogeneity and promotes different responses to therapies. This review describes the molecular characterization of KRAS mutant lung cancers from a biologic perspective to its clinical implications. We aim to summarize the tumor heterogeneity of KRAS mutant lung cancers and its immune-regulatory role, to report the efficacy achieved with current immunotherapies, and to overview the therapeutic approaches targeting KRAS mutations besides KRAS G12C inhibitors.

2022 ◽  
Vol 12 ◽  
Lan-Xin Mu ◽  
You-Cheng Shao ◽  
Lei Wei ◽  
Fang-Fang Chen ◽  
Jing-Wei Zhang

Purpose: This study aims to reveal the relationship between RNA N6-methyladenosine (m6A) regulators and tumor immune microenvironment (TME) in breast cancer, and to establish a risk model for predicting the occurrence and development of tumors.Patients and methods: In the present study, we respectively downloaded the transcriptome dataset of breast cancer from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database to analyze the mutation characteristics of m6A regulators and their expression profile in different clinicopathological groups. Then we used the weighted correlation network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), and cox regression to construct a risk prediction model based on m6A-associated hub genes. In addition, Immune infiltration analysis and gene set enrichment analysis (GSEA) was used to evaluate the immune cell context and the enriched gene sets among the subgroups.Results: Compared with adjacent normal tissue, differentially expressed 24 m6A regulators were identified in breast cancer. According to the expression features of m6A regulators above, we established two subgroups of breast cancer, which were also surprisingly distinguished by the feature of the immune microenvironment. The Model based on modification patterns of m6A regulators could predict the patient’s T stage and evaluate their prognosis. Besides, the low m6aRiskscore group presents an immune-activated phenotype as well as a lower tumor mutation load, and its 5-years survival rate was 90.5%, while that of the high m6ariskscore group was only 74.1%. Finally, the cohort confirmed that age (p < 0.001) and m6aRiskscore (p < 0.001) are both risk factors for breast cancer in the multivariate regression.Conclusion: The m6A regulators play an important role in the regulation of breast tumor immune microenvironment and is helpful to provide guidance for clinical immunotherapy.

2022 ◽  
Vol 11 ◽  
Dan Mu ◽  
Pan He ◽  
Yesi Shi ◽  
Lai Jiang ◽  
Gang Liu

Immunotherapy can effectively activate the immune system and reshape the tumor immune microenvironment, which has been an alternative method in cancer therapy besides surgery, radiotherapy, and chemotherapy. However, the current clinical outcomes are not satisfied due to the lack of targeting of the treatment with some unexpected damages to the human body. Recently, cell membrane-based bioinspired nanoparticles for tumor immunotherapy have attracted much attention because of their superior immune regulating, drug delivery, excellent tumor targeting, and biocompatibility. Together, the article reviews the recent progress of cell membrane-based bioinspired nanoparticles for immunotherapy in cancer treatment. We also evaluate the prospect of bioinspired nanoparticles in immunotherapy for cancer. This strategy may open up new research directions for cancer therapy.

2022 ◽  
Jianmin Ren ◽  
Jinglu Yu ◽  
Yang Shi ◽  
Inam Ullah Khan ◽  
Jiansheng Huang

Abstract Background: The relationship between the pseudogene and tumor immune microenvironment in cutaneous melanoma is unclear. In this study, we analyzed the role of the pseudogene HLA-DRB6 and its effect on the tumor immune microenvironment in skin cutaneous melanoma (SKCM) using bioinformatics tools. Method: The GEPIA database was used to analyze the expression of HLA-DRB6 and CXCL10 mRNA in tumor tissues. The TIMER database was used to analyze the relationship between mRNA levels and the infiltration of immune cells. The enrichment of HLA-DRB6 and CXCL10 in melanoma tissues was analyzed by single cell portal. The binding sites of HLA-DRB6 with its target genes was predicted via starBase database. The gene expression profiling and clinical data from GEO database (GSE94873) was used to verify the potential of CXCL10 as a biomarker. Result: The expression of HLA-DRB6 in SKCM tumor is higher than in normal tissues, and patients with high HLA-DRB6 expression had a better prognosis (P<0.05). Furthermore, HLA-DRB6 is positively correlated with the infiltration of immune cells such as B cells, CD4+ T, and CD8+ T lymphocytes, and the expression of immune checkpoint molecules such as PD-1, PD-L1, and CTLA-4. Single cell transcriptome sequencing data showed that HLA-DRB6 is mainly enriched in macrophages and had the highest correlation with CXCL10 than other chemokines (cor=0.66, P<0.0001). In addition, we found that CXCL10 can be used as a potential biomarker for predicting responsiveness and survival rate in SKCM patients who treated with Tremelimumab (a human anti-CTLA-4 antibody). Conclusion: In the microenvironment of SKCM, HLA-DRB6 is mainly enriched in macrophages and regulates the expression of CXCL10 through the ceRNA mechanism. Furthermore, the CXCL10 in peripheral blood can be used as a biomarker to predict the responsiveness and the prognosis for patients treated with tremelimumab.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 282
W. Quinn O’Neill ◽  
Xiujie Xie ◽  
Shanying Gui ◽  
Heping Yu ◽  
Jacqueline Davenport ◽  

Human papillomavirus-associated head and neck squamous cell carcinoma (HPV+ HNSCC) is recognized as a distinct disease with unique etiology and clinical features. Current standard of care therapeutic modalities are identical for HPV+ and HPV− HNSCC and thus, there remains an opportunity to develop innovative pharmacologic approaches to exploit the inherent vulnerabilities of HPV+ HNSCC. In this study, using an inducible HPVE6E7 knockdown system, we found that HPV+ HNSCC cells are addicted to HPVE6E7, such that loss of these viral oncogenes impaired tumorigenicity in vitro and in vivo. A number of druggable pathways, including PPAR and Wnt, were modulated in response to HPVE6E7 loss. Fenofibrate showed significant anti-proliferative effects in a panel of HPV+ cancer cell lines. Additionally, fenofibrate impaired tumor growth as monotherapy and potentiated the activity of cisplatin in a pre-clinical HPV+ animal model. Systemic fenofibrate treatment induced p53 protein accumulation, and surprisingly, re-programmed the tumor-immune microenvironment to drive immune cell infiltration. Since fenofibrate is FDA-approved with a favorable long-term safety record, repositioning of this drug, as a single agent or in combination with cisplatin or checkpoint blockade, for the HPV+ HNSCC setting should be prioritized.

2022 ◽  
pp. 2108084
Meghan J. O'Melia ◽  
Adriana Mulero‐Russe ◽  
Jihoon Kim ◽  
Alyssa Pybus ◽  
Deborah DeRyckere ◽  

Zhi-Bin Ke ◽  
Qi You ◽  
Jiang-Bo Sun ◽  
Jun-Ming Zhu ◽  
Xiao-Dong Li ◽  

Objective: To identify ferroptosis-related molecular clusters, and to develop and validate a ferroptosis-based molecular signature for predicting biochemical recurrence-free survival (BCRFS) and tumor immune microenvironment of prostate cancer (PCa).Materials and Methods: The clinical data and transcriptome data of PCa were downloaded from TCGA and GEO database. Ferroptosis-related genes (FRGs) were obtained from FerrDb database. We performed consensus clustering analysis to identify ferroptosis-related molecular subtypes for PCa. Univariate and multivariate Cox regression analysis were used to establish a ferroptosis-based signature for predicting BCRFS. Internal verification, external verification and subgroup survival analysis were then successfully performed.Results: There was a total of 40 differentially expressed FRGs in PCa. We then identified three ferroptosis-related molecular clusters of PCa, which have significantly different immune infiltrating cells, tumor immune microenvironment and PD-L1 expression level. More importantly, a novel ferroptosis-based signature for predicting BCRFS of PCa based on four FRGs (including ASNS, GPT2, NFE2L2, RRM2) was developed. Internal and external verifications were then successfully performed. Patients with high-risk score were associated with significant poor BCRFS compared with those with low-risk score in training cohort, testing cohort and validating cohort, respectively. The area under time-dependent Receiver Operating Characteristic (ROC) curve were 0.755, 0.705 and 0.726 in training cohort, testing cohort and validating cohort, respectively, indicating the great performance of this signature. Independent prognostic analysis indicated that this signature was an independent predictor for BCRFS of PCa. Subgroup analysis revealed that this signature was particularly suitable for younger or stage T III-IV or stage N0 or cluster 1-2 PCa patients. Patients with high-risk score have significantly different tumor immune microenvironment in comparison with those with low-risk score. The results of qRT-PCR successfully verified the mRNA expression levels of ASNS, GPT2, RRM2 and NFE2L2 in DU-145 and RWPE-1 cells while the results of IHC staining exactly verified the relative protein expression levels of ASNS, GPT2, RRM2 and NFE2L2 between PCa and BPH tissues.Conclusions: This study successfully identified three ferroptosis-related molecular clusters. Besides, we developed and validated a novel ferroptosis-based molecular signature, which performed well in predicting BCRFS and tumor immune microenvironment of PCa.

Sign in / Sign up

Export Citation Format

Share Document