wenner array
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
PAUL ADENIRAN AJAKAYE ◽  
Emmanuel Somoye ◽  
Lawal Owolabi

Abstract Soil degradation forms a part of the significant impacts arising from indiscriminate disposal of e-waste. This study was aimed at assessing the magnitude of legacy contamination by e-waste, particularly, its depth and spread in the subsurface soil of Alaba International Market e-waste dumpsite in Lagos, Nigeria through the analysis of VES and 2D-Wenner array configuration data acquired on the dumpsite. The results of the VES data and 2D resistivity analysis showed that Alaba dumpsite was highly impacted by e-wastes due to the permeable geo-electric characteristics of the lithologic units beneath the dumpsite. The lithogy enables the pollutants to spread laterally and progressively increase in depth through sand column subsurface to more than 30m. It also showed that the contaminated zones are characterised by resistivity values ranging from 5.0 to 8.3 Ω.m. The study site is highly populated with wells and boreholes as the main sources of water for the community, thus the findings from this study could facilitate Lagos State Government decisions on improving protection for groundwater resources around the study area.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Wilfred N. Igboama ◽  
Olaide S. Hammed ◽  
Maruf T. Aroyehun ◽  
Nicholas U. Ugwu

Geoelectrical and geotechnical investigations were carried out to characterize soils from different locations in Ede, Osun State, Nigeria for engineering purposes. Wenner electrode configuration technique was deployed in carrying out the geoelectrical survey of about 40m for each profile. The data analysis was approached by plotting the apparent conductivity against electrode spacing (s) and the result was interpreted.  The geoelectrical resistivity survey revealed locations 1 and 2 with resistivity values of 25.01-419.22ohm-m (conductivity 0.002 - 0.194 (ohm-m)-1and 5.5-1246.57 ohm-m (conductivity = 0.0002 - 0.001 (ohm-m)-1) respectively could be classified as clay. Sample 3 recorded a resistivity value of 1.00- 22,787.39 ohm-m (conductivity= 0.00004- 1.00 (ohm-m)-1) thus, was classified as silt/sand respectively. Soil  from the said different locations in Ede, Nigeria, were tested in the Laboratory for certain properties like Atterberg limits, specific gravities, sieve analysis, compaction test, etc and the results showed that samples 1, 2 and 3 have specific gravity values of 2.50, 2.13 and 2.40 respectively and could therefore be referred to as organic soil. Samples 1, 2 and 3 have maximum dry density (MDD) of 1.45g/cm3­, 1.92g/cm3, 1.95g/cm3 and optimum moisture content (OMC) of 15.40%, 13.36% and 9.61% respectively. The analysis conducted in this study revealed that the soil type found in Ede, Nigeria could be classified as silt-clay, sandy clay, clay and sand.Keywords- Electrical conductivity, Characterization, Compaction, Plasticity, Wenner array.


2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Mustapha Adejo Mohammed ◽  
Nordiana Mohd Muztaza ◽  
Rosli Saad

Two-dimensional electrical resistivity tomography (2-D ERT) is one of the most common geophysical tools employed to satisfy the ever-growing need for obtaining subsurface information. Most of the conventional electrode arrays used for 2-D ERT survey are built with the theoretical assumption that the survey lines are straight to guarantee four collinear electrodes at every point of measurement. However, due to surface constraint associated with most survey areas, it is rarely possible to conduct a two-dimensional resistivity survey on a straight line. Therefore, 2-D ERT survey conducted on a surface constraint field requires shifting one or more electrodes off the survey line, which contrasts with the underlying assumption. Consequently, the result might be prone to false anomalies. Thus, this study aimed to device a new approach that could mitigate the false anomalies posed by non-collinearity of electrodes in 2-D ERT result. In view of this, ABEM Terrameter SAS4000 using Wenner array configuration was adopted for the survey. The data was acquired with all electrodes inline and one or more electrodes offline at stepwise distances, respectively. Based on the result obtained, the new approach mitigates the offline electrodes effect, as the inverse resistivity tomograms resolves the geometries of the true model reasonably well. More so, it has high R-value >90% which is an indication of proximity to the true model. Hence, it is concluded that the new approach is effective in mitigating offline electrode effect on a 2-D ERT result.


2021 ◽  
Vol 20 (1) ◽  
pp. 125-140
Author(s):  
J.O. Coker ◽  
A.O. Atilade ◽  
A.A. Alabi ◽  
D.S. Ebeniro ◽  
G.O. Layade

Water is an essential commodity for life survival on Earth. Groundwater exists below the surface in the soil pores, fractures within rocks, fissures, and other weak geological features or zones. The aim of this research was to delineate groundwater potential within the Forest Research Institute of Nigeria (FRIN) and hence determining the possible areas suitable for siting borehole for sustainable potable water supply. Four electromagnetic traverses were carried out and ten vertical electrical sounding (VES) points were identified for detailed probing using the Schlumberger configuration. Wenner array survey was also carried out along two traverses. The VES data collected was processed using curve matching and Computer software called Winresist while Wenner array was processed using RES2DINV. The results from the interpretation of the four (4) EM profiles revealed low conductivity zone with a value ranging from 4.6 to 19.7 mS m.-1 The results of VES give a maximum of four subsurface geoelectrical layers with five curve types, which are K, Q, AK, HK, and KH. The weathered basement has a resistivity value ranging from143.8 to 450 Ωm and depth to basement ranging between 13.9 m and 39.4 m. The interpretation of the ten VES points obtained suggested that three VES points (VES 2, 5, and 7) are suitable for borehole drilling. The results of the 2D resistivity value ranges from 17.5 to 747 Ωm with a varying depth between 3.25 and 15.9 m. The results of the integrated geophysical survey techniques have proven to be an effective method for groundwater delineation in the study area. Keywords: Aquifer, Borehole, Electromagnetic, Geoelectric, and Groundwater


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 249
Author(s):  
José Alberto Batista-Rodríguez ◽  
Marco Antonio Pérez-Flores

The results on the effectiveness of five 2D electrical resistivity tomography (ERT) survey profiles for Ag-Pb-Zn, fluorite, and barite exploration Mississippi Valley Type (MVT) and on the magmatic deposits of northeast Mexico, are presented. The profiles were made in areas with mining activities or mineralization outcrops. Schlumberger, dipole-dipole, and Wenner array configurations were used on the measurements. The results showed that electric resistivity can be used to distinguish between mineralized zones. In magmatic-type Pb-Zn and MVT Pb-Zn deposits, resistivity values are shown as low. In magmatic-type fluorite and MVT fluorite deposits, as well as the MVT barite deposit, low-resistivity values are related to Fe sulfides and clays. With these results it is possible to connect observed surface mineralization with underground mineralization. New mineralized zones are also found and their geometries, extensions, and dipping are reported. Therefore, lower resistivity values can be linked to mineral bodies with higher Ag-Pb-Zn contents, as well as bodies enriched in Fe sulfides, Fe oxides, and clays in the fluorite and barite mineralizations. In most ERT models, fractures and faults are identified, indicating a structural control on mineralization. From the geoelectric patterns we can infer the magmatic and MVT origin of these mineral deposits.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 69
Author(s):  
Azadeh Hojat ◽  
Maddalena Ferrario ◽  
Diego Arosio ◽  
Marco Brunero ◽  
Vladislav Ivov Ivanov ◽  
...  

We present the results of laboratory experiments on a down-scaled river levee constructed with clayey material collected from a river embankment where a permanent resistivity instrument has operated since 2015. To create potential seepages through the levee, two zones (5 × 4 cm and 10 × 2 cm) were filled with sand during the levee construction. Electrical resistivity tomography (ERT) technique and Fiber Bragg Grating (FBG) technology were used to study time-lapse variations due to seepage. The ERT profile was spread on the levee crest and the Wenner array with unit electrode spacing a = 3 cm was used. Six organic modified ceramics (ORMOCER) coated 250 μm-diameter fibers were deployed in different parts of the levee. Time-lapse measurements were performed for both techniques from the beginning of each experiment when water was added to the river side until the water was continuously exiting from the seepage zones. The results showed that ERT images could detect seepages from the early stages. Although with a short delay compared to ERT, fiber optic sensors also showed their ability to detect water infiltrations by measuring temperature changes. Both technologies being successful, a discussion about respective peculiarities and pros and cons is proposed to suggest some criteria in choosing the proper technique according to the specific needs.


2018 ◽  
Vol 64 (3) ◽  
pp. 8-20
Author(s):  
Stephen Oluwafemi Ariyo ◽  
Julius Ogunmola Fatoba ◽  
Olateju O. Bayewu ◽  
Kamaldeen Olakunle Omosanya ◽  
Muhedeen Ajibola Lawal

Abstract Building collapse has been a recurrent environmental hazard in Nigeria in the last two decades. This is a corollary of inadequate foundation investigation prior to construction, poor government policies, and general lack of awareness on the importance of geophysical and geotechnical investigations. In this study, geological mapping and detailed geophysical investigation using Electrical Resistivity Imaging (ERI) and Vertical Electrical Sounding (VES) were carried out to understand the suitability of proposed building sites at the main campus of the Olabisi Onabanjo University (OOU), Ago-Iwoye, Nigeria for construction. Both Wenner array and dipole-dipole were used for profiling and Schlumberger for sounding. Four transverses and VES were used in each of the three areas investigated. Our results show that the subsurface of the study areas is underlain by Precambrian basement rock of Nigeria. Rocks in the study area include banded gneiss, porphyroblastic gneiss, biotite-hornblende granite and quartzite schist. The sounding stations across the three areas and 2D resistivity imaging revealed three principal geoelectric layers, the topsoil, the weathered layer and the fractured/fresh basement with varied resistivity values for each layers. At the VES stations, the three geoelectric layers have resistivity values of 62 to 1182 Ωm, 3.2 to 1360Ωm and 87 to 4680 Ωm. On the 2D resistivity imaging profiles, the resistivity of the three layers varies from 2 to 1182 Ωm, 30to 1360 Ωm, and 40 to 2904 Ωm for the topsoil, the weathered basement, and fractured/fresh bedrock. Our work demonstrates that some of the proposed sites are structurally incompetent for engineering or foundation purposes. Excavation of the topsoil and reinforcement are required to sustain the proposed structures.


Sign in / Sign up

Export Citation Format

Share Document