Designing Nanoporous Coral‐Like Pt Nanowires Architecture for Methanol and Ammonia Oxidation Reactions

2021 ◽  
pp. 2110702
Author(s):  
Jie Liu ◽  
Zhi Liu ◽  
Haozhi Wang ◽  
Bin Liu ◽  
Naiqin Zhao ◽  
...  
2013 ◽  
Vol 275-277 ◽  
pp. 2226-2229 ◽  
Author(s):  
Jin Xiang Fu ◽  
Xi Jiang ◽  
Jun Zhao

Through running anaerobic ammonia oxidation reactors for a few days, we found that inorganic carbon source has great influence on anaerobic ammonia oxidation reactions. The inorganic carbon source increasing, the effect of anaerobic ammonia oxidation bacteria reaction is much better and the processing rate is high. And if there are no inorganic carbon source, anaerobic ammonia oxidation reactions are running anomaly. The processing rate of nitrate nitrogen is about 80%, and the processing rate of ammonia nitrogen is only 30% or so. The anaerobic ammonia oxidation bacteria metabolic is getting worse and worse.


ACS Catalysis ◽  
2020 ◽  
Vol 10 (19) ◽  
pp. 11674-11684 ◽  
Author(s):  
Haesol Kim ◽  
Woojin Yang ◽  
Woong Hee Lee ◽  
Man Ho Han ◽  
Joonhee Moon ◽  
...  

1958 ◽  
Vol 14 (5_6) ◽  
pp. 357-360
Author(s):  
K. C. Grover ◽  
R. C. Mehrotra

1958 ◽  
Vol 14 (5_6) ◽  
pp. 345-356 ◽  
Author(s):  
K. C. Grover ◽  
R. C. Mehrotra

Author(s):  
Emma Jakab ◽  
Zoltán Sebestyén ◽  
Bence Babinszki ◽  
Eszter Barta-Rajnai ◽  
Zsuzsanna Czégény ◽  
...  

SummaryThe thermo-oxidative decomposition of lovage (Levisticum officinale) and davana (Artemisia pallens) essential oils has been studied by pyrolysis-gas chromatography/mass spectrometry in 9% oxygen and 91% nitrogen atmosphere at 300 °C to simulate low-temperature tobacco heating conditions. Both lovage and davana oils contain numerous chemical substances; the main components of both oils are various oxygen-containing compounds. Isobenzofuranones are the most important constituents of lovage oil, and their relative intensity changed significantly during oxidative pyrolysis. (Z)-ligustilide underwent two kinds of decomposition reactions: an aromatization reaction resulting in the formation of butylidenephthalide and the scission of the lactone ring with the elimination of carbon dioxide or carbon monoxide. Davanone is the main component of davana oil, which did not decompose considerably during low-temperature oxidative pyrolysis. However, the relative yield of the second most intensive component, bicyclogermacrene, reduced markedly due to bond rearrangement reactions. Davana ether underwent oxidation reactions leading to the formation of various furanic compounds. The changes in the composition of both essential oils could be interpreted in terms of bond splitting, intramolecular rearrangement mechanisms and oxidation reactions of several constituents during low-temperature oxidative pyrolysis. The applied thermo-oxidative method was found to be suitable to study the stability of the essential oils and monitor the decomposition products under simulated tobacco heating conditions. In spite of the complicated composition of the essential oils, no evidence for interaction between the oil components was found. [Beitr. Tabakforsch. Int. 29 (2020) 27–43]


2018 ◽  
Author(s):  
Asim Maity ◽  
Sung-Min Hyun ◽  
Alan Wortman ◽  
David Powers

<p>Hypervalent iodine(V) reagents, such as Dess-Martin periodinane (DMP) and 2-iodoxybenzoic acid (IBX), are broadly useful oxidants in chemical synthesis. Development of strategies to access these reagents from O2 would immediately enable use of O2 as a terminal oxidant in a broad array of substrate oxidation reactions. Recently we disclosed the aerobic synthesis of I(III) reagents by intercepting reactive oxidants generated during aldehyde autoxidation. Here, we couple aerobic oxidation of iodobenzenes with disproportionation of the initially generated I(III) compounds to generate I(V) reagents. The aerobically generated I(V) reagents exhibit substrate oxidation chemistry analogous to that of DMP. Further, the developed aerobic generation of I(V) has enabled the first application of I(V) intermediates in aerobic oxidation catalysis.</p>


2019 ◽  
Author(s):  
Wugen Huang ◽  
qingfei liu ◽  
Zhiwen Zhou ◽  
Yangsheng Li ◽  
Yong Wang ◽  
...  

Despite tremendous importance in catalysis, the design and improvement of the oxide- metal interface has been hampered by the limited understanding on the nature of interfacial sites, as well as the oxide-metal interaction (OMI). Through the construction of well-defined Cu<sub>2</sub>O-Pt, Cu<sub>2</sub>O-Ag, Cu<sub>2</sub>O-Au interfaces, we found that Cu<sub>2</sub>O Nanostructures (NSs) on Pt exhibit much lower thermal stability than on Ag and Au, although they show the same surface and edge structures, as identified by element-specific scanning tunneling microscopy (ES-STM) images. The activities of the Cu<sub>2</sub>O-Pt and Cu<sub>2</sub>O-Au interfaces for CO oxidation were further compared at the atomic scale and showed in general that the interface with Cu<sub>2</sub>O NSs could annihilate the CO-poisoning problem suffered by Pt group metals and enhance the interaction with O<sub>2</sub>, which is a limiting step for CO oxidation catalysis on group IB metals. While both interfaces could react with CO at room temperature, the OMI was found to determine the reactivity of supported Cu<sub>2</sub>O NSs by 1) tuning the activity of interfacial oxygen atoms and 2) stabilizing oxygen vacancies or vice versa, the dissociated oxygen atoms at the interface. Our study provides new insight for OMI and for the development of Cu-based catalysts for low temperature oxidation reactions.


Sign in / Sign up

Export Citation Format

Share Document