frequency aliasing
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4084
Author(s):  
Xin-Yu Zhao ◽  
Li-Jing Li ◽  
Lei Cao ◽  
Ming-Jie Sun

Digital cameras obtain color information of the scene using a chromatic filter, usually a Bayer filter, overlaid on a pixelated detector. However, the periodic arrangement of both the filter array and the detector array introduces frequency aliasing in sampling and color misregistration during demosaicking process which causes degradation of image quality. Inspired by the biological structure of the avian retinas, we developed a chromatic LED array which has a geometric arrangement of multi-hyperuniformity, which exhibits an irregularity on small-length scales but a quasi-uniformity on large scales, to suppress frequency aliasing and color misregistration in full color image retrieval. Experiments were performed with a single-pixel imaging system using the multi-hyperuniform chromatic LED array to provide structured illumination, and 208 fps frame rate was achieved at 32 × 32 pixel resolution. By comparing the experimental results with the images captured with a conventional digital camera, it has been demonstrated that the proposed imaging system forms images with less chromatic moiré patterns and color misregistration artifacts. The concept proposed verified here could provide insights for the design and the manufacturing of future bionic imaging sensors.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bin Liu ◽  
Tingzhang Liu ◽  
Jianfei Zhao ◽  
Dan Hang

The spatial-wavenumber filter method can extract the specific mode of the Lamb wave, thereby distinguishing the incident wave and the damage reflection wave. This method has been widely studied for damage imaging. However, the diameter of piezoelectric transducer (PZT) sensor limits the spatial sampling wavenumber of the linear PZT sensor array, which limits the application of this method because of the Nyquist–Shannon sampling theorem. Therefore, the wavenumber filtering range of spatial-wavenumber filter should be less than half of the spatial sampling wavenumber. In this paper, a frequency aliasing based spatial-wavenumber filter for online damage monitoring is proposed. In this method, the wavenumber filtering range is extended to the spatial sampling wavenumber, and two wavenumber results will be calculated as for the frequency aliasing. Subsequently, the wavenumber of the received Lamb wave signal can be obtained according to the average arrival time difference between the two adjacent sensors in the linear PZT sensor array. Finally, the damage is localized using the spatial-wavenumber filter and cruciform PZT sensor array. This method was validated on an epoxy laminate plate. The maximum damage localization errors are less than 2 cm. It is indicated that this method can extend the spatial-wavenumber filtering range to the spatial sampling wavenumber and the application of spatial-wavenumber filter-based online damage monitoring.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 336 ◽  
Author(s):  
Yulei Qian ◽  
Daiyin Zhu

Synthetic Aperture Radar (SAR) raw data missing occurs when radar is interrupted by various influences. In order to cope with this problem, a new method is proposed to focus the azimuth missing SAR raw data via segmented recovery in this paper. A reference function in time domain is designed to make the missing raw data sparser in two dimensional frequency domain. Afterwards, greedy algorithms are available to recover the missing data in two dimensional frequency domain. In addition, in order to avoid range frequency aliasing problem caused by reference function multiplication in time domain, the missing raw data is split into several parts in range direction and is recovered with a segmented recovery strategy. Then, the recovered raw data is available to be focused with traditional SAR imaging algorithms. The range migration algorithm is chosen to deal with the recovered raw data in this paper. Point target and area target simulations are carried out to validate the effectiveness of the proposed method on azimuth missing SAR raw data. Moreover, the proposed method is implemented on real SAR data in order to further provide convincing demonstration.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
W. Zhuo-qun ◽  
L. Ya-jun ◽  
S. Sheng ◽  
L. Shuang-shuang ◽  
X. Jin-guo ◽  
...  

The bistatic configuration with a geosynchronous orbital SAR (GEOSAR) transmitter and unmanned aerial vehicle SAR (UAVSAR) receiver can continuously image in any dangerous and interesting district. In this paper, the new imaging method in the case with the smaller orbital inclination of geosynchronous earth orbit and the steering beam working mode of UAVSAR was mainly studied and analyzed. GEOSAR can be approximately expressed as a static state, and only the receiver provides all the Doppler information. UAVSAR works in the steering beam modes, such as spotlight, sliding spotlight, and TOPS (Terrain Observation by Progressive Scan) mode. The azimuth bandwidth increased by the steering beam causes an aliasing situation in the azimuth frequency domain. To solve this problem, the proposed imaging method corrects the azimuth frequency aliasing using the scaling transform and the bulk azimuth compression. Compared with the traditional imaging method, the simulation validates perfectly the effectiveness of the bistatic imaging algorithm.


Sign in / Sign up

Export Citation Format

Share Document