mems vibratory gyroscopes
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 506
Author(s):  
Pengfei Xu ◽  
Zhenyu Wei ◽  
Zhiyu Guo ◽  
Lu Jia ◽  
Guowei Han ◽  
...  

With the development of the designing and manufacturing level for micro-electromechanical system (MEMS) gyroscopes, the control circuit system has become a key point to determine their internal performance. Nevertheless, the phase delay of electronic components may result in some serious hazards. This study described a real-time circuit phase delay correction system for MEMS vibratory gyroscopes. A detailed theoretical analysis was provided to clarify the influence of circuit phase delay on the in-phase and quadrature (IQ) coupling characteristics and the zero-rate output (ZRO) utilizing a force-to-rebalance (FTR) closed-loop detection and quadrature correction system. By deducing the relationship between the amplitude-frequency, the phase-frequency of the MEMS gyroscope, and the phase relationship of the whole control loop, a real-time correction system was proposed to automatically adjust the phase reference value of the phase-locked loop (PLL) and thus compensate for the real-time circuit phase delay. The experimental results showed that the correction system can accurately measure and compensate the circuit phase delay in real time. Furthermore, the unwanted IQ coupling can be eliminated and the ZRO was decreased by 755% to 0.095°/s. This correction system realized a small angle random walk of 0.978°/√h and a low bias instability of 9.458°/h together with a scale factor nonlinearity of 255 ppm at room temperature. The thermal drift of the ZRO was reduced to 0.0034°/s/°C at a temperature range from −20 to 70 °C.


Author(s):  
Pengfei Xu ◽  
Zhenyu Wei ◽  
Zhiyu Guo ◽  
Lu Jia ◽  
Guowei Han ◽  
...  

With the development of designing and manufacturing level for micro-electromechanical system (MEMS) gyroscopes, the control circuit system becomes a key point to determine their internal performances. Nevertheless, phase delay of electron components may result in some serious hazards. This paper describes a real-time circuit phase delay correction system for MEMS vibratory gyroscopes. A detailed theoretical analysis is provided to clarify the influences of circuit phase delay on the in-phase and quadrature (IQ) coupling characteristics and zero rate output (ZRO) utilizing force-to-rebalance (FTR) closed-loop detection and quadrature correction system. By deducing the relationship between amplitude-frequency, phase-frequency of MEMS gyroscope and the phase relationship of the whole control loop, a real-time correction system is proposed to automatically adjust the phase reference value of phase-locked loop (PLL) and thus compensate for the real-time circuit phase delay. The experimental results show that the correction system can accurately measure and compensate the circuit phase delay in real time. Furthermore, the unwanted IQ coupling can be eliminated and the ZRO is decreased by 755% to 0.095°/s. This correction system realizes a small angle random walk of 0.978°/√h, and a low bias instability of 9.458°/h together with a scale factor nonlinearity of 255 ppm at room temperature. Besides, the thermal drift of ZRO is reduced to 0.0034°/s/°C at a temperature range from -20°C to 70°C.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5460 ◽  
Author(s):  
Risheng Lv ◽  
Qiang Fu ◽  
Weiping Chen ◽  
Liang Yin ◽  
Xiaowei Liu ◽  
...  

This paper proposes a solution for sensing spatial angular velocity. A high-performance digital interface application specific integrated circuit (ASIC) for triple-axis micro-electromechanical systems (MEMS) vibratory gyroscopes is presented. The technique of time multiplexing is employed for synergetic stable drive control and precise angular velocity measurement in three separate degrees of freedom (DOF). Self-excited digital closed loop drives the proof mass in sensing elements at its inherent resonant frequency for Coriolis force generation during angular rotation. The analog front ends in both drive and sense loops are comprised of low-noise charge-voltage (C/V) converters and multi-channel incremental zoom analog-to-digital converters (ADC), so that capacitance variation between combs induced by mechanical motion is transformed into digital voltage signals. Other circuitry elements, such as loop controlling and accurate demodulation modules, are all implemented in digital logics. Automatic amplitude stabilization is mainly realized by peak detection and proportion-integration (PI) control. Nonlinear digital gain adjustment is designed for rapid establishment of resonance oscillation and linearity improvement. Manufactured in a standard 0.35-μm complementary metal-oxide-semiconductor (CMOS) technology, this design achieves a bias instability of 2.1°/h and a nonlinearity of 0.012% over full-scale range.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 270 ◽  
Author(s):  
Risheng Lv ◽  
Qiang Fu ◽  
Liang Yin ◽  
Yuan Gao ◽  
Wei Bai ◽  
...  

This paper proposes an interface application-specific-integrated-circuit (ASIC) for micro-electromechanical systems (MEMS) vibratory gyroscopes. A closed self-excited drive loop is employed for automatic amplitude stabilization based on peak detection and proportion-integration (PI) controller. A nonlinear multiplier terminating the drive loop is designed for rapid resonance oscillation and linearity improvement. Capacitance variation induced by mechanical motion is detected by a differential charge amplifier in sense mode. After phase demodulation and low-pass filtering an analog signal indicating the input angular velocity is obtained. Non-idealities are further suppressed by on-chip temperature drift calibration. In order for better compatibility with digital circuitry systems, a low passband incremental zoom sigma-delta (ΣΔ) analog-to-digital converter (ADC) is implemented for digital output. Manufactured in a standard 0.35 μm complementary metal-oxide-semiconductor (CMOS) technology, the whole interface occupies an active area of 3.2 mm2. Experimental results show a bias instability of 2.2 °/h and a nonlinearity of 0.016% over the full-scale range.


Sign in / Sign up

Export Citation Format

Share Document