scholarly journals Treatment of the Allura red food colorant contaminated water by a novel cyanobacteria Desertifilum tharense

Author(s):  
Ülküye Dudu Gül ◽  
Zeynep Mine Şenol ◽  
Burcu Ertit Taştan

Abstract The biosorption properties of a newly isolated and identified cyanobacterium called Desertifilum tharense were investigated in the current study. Following morphological and molecular identification (16S rRNA sequencing analysis), the food colorant removal potential of this new isolate was determined. Moreover, the isotherm, kinetic, and thermodynamic studies were performed, and also the biosorbent characterization was studied after and before colorant biosorption with FTIR and SEM analysis. Additionally, the changes in chlorophyll content of the biosorbent were examined after and before colorant treatment. The newly isolated cyanobacterial biosorbent removed 97% of Allura red food colorant/dye at 1,500 mg L−1 initial dye concentration successfully at optimal conditions. Langmuir isotherm and pseudo-second-order kinetic models were fitted with the biosorption of the dye. The D-R model showed that the biosorption process physically occurred. The chlorophyll-a content of the biosorbent was negatively affected by the biosorption. The newly isolated and identified cyanobacterium seems to be a successful candidate for the use to treat highly dye concentrated wastewaters.

2018 ◽  
Vol 83 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Zdravka Velkova ◽  
Gergana Kirova ◽  
Margarita Stoytcheva ◽  
Velizar Gochev

Pretreated waste Streptomyces fradiae biomass was utilized as an eco-friendly sorbent for Congo Red (CR) and Methylene Blue (MB) removal from aqueous solutions. The biosorbent was characterized by Fourier transform infrared spectroscopy. Batch experiments were conducted to study the effect of pH, biosorbent dosage, initial concentration of adsorbates, contact time and temperature on the biosorption of the two dyes. The equilibrium adsorption data were analysed using Freundlich and Langmuir models. Both models fitted well the experimental data. The maximum biosorption capacity of the pretreated Streptomyces fradiae biomass was 46.64 mg g-1 for CR and 59.63 mg g-1 for MB, at a pH 6.0, with the contact time of 120 min, the biosorbent dosage of 2 g dm-3 and the temperature of 298 K. Lagergren and Ho kinetic models were used to analyse the kinetic data obtained from different batch experiments. The biosorption of both dyes followed better the pseudo-second order kinetic model. The calculated values for ?G, ?S, and ?H indicated that the biosorption of CR and MB onto the waste pretreated biomass was feasible, spontaneous, and exothermic in the selected temperature range and conditions.


2020 ◽  
Vol 10 (9) ◽  
Author(s):  
G. B. Adebayo ◽  
H. I. Adegoke ◽  
Sidiq Fauzeeyat

Abstract Hexavalent chromium was adsorbed from aqueous solution with three prepared and characterized adsorbents, namely goethite (G), activated carbon (AC) and their composite (GAC). The goethite particle was synthesized using the precipitation methods, and activated carbon was prepared from the stem bark of Daniellia oliveri tree and composite in a ratio of 1:5 goethite–activated carbon. The adsorption capacities of G, AC and GAC for Cr(VI) are 6.627, 5.455 and 6.354 mg/g with 0.02 g adsorbent within contact time of 60, 180 and 30 min for G, AC and GAC, respectively, for Cr(VI) adsorption at optimum pH of 3. The isotherm studied was best explained by Langmuir adsorption isotherm and fitted with the pseudo-second-order kinetic model. Desorption studies showed that 1.0 M HNO3 was a better desorbing agent than 0.1 M HNO3, 0.1 M HCl and 1.0 M HCl. Chromium was most desorbed (94.60% in Cr//G using 1 M HNO3). The result obtained revealed that goethite and activated carbon produced are favourable adsorbents and the composite of the two adsorbents gives a more favourable, economical and affordable adsorbent for the clean-up of heavy metal contamination.


2013 ◽  
Vol 19 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Meisam Torab-Mostaedi

Biosorption of lanthanum (III) and cerium (III) from aqueous solution by tangerine (Citrus reticulate) peel has been investigated in a batch system as a function of pH, biosorbent dosage, contact time, and temperature. The equilibrium pH was found to severely affect the biosorption performance; pH 5.0 is found to be an optimum pH for favorable biosorption of La (III) and Ce (III). The biosorption of lanthanum and cerium was investigated by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum biosorption uptakes, according to the Langmuir model, were obtained as 154.86 and 162.79 (mg/g) for La(III) and Ce(III), respectively. The biosorption kinetic was tested with pseudo-first order and pseudo-second order models. The results showed that the kinetic of biosorption process was described by the pseudo-second order model very well. Thermodynamic parameters including the change of Gibbs free energy (?G?), enthalpy change (?H?) and entropy change (?S?) for both sorption systems were determined at four different temperatures. The results showed that the biosorption of La(III) and Ce(III) on tangerine (C. reticulate) peel is a spontaneous and endothermic process. FTIR analysis demonstrated that carboxyl and hydroxyl groups were involved in the biosorption of the metal ions.


2011 ◽  
Vol 76 (3) ◽  
pp. 363-373 ◽  
Author(s):  
Szende Tonk ◽  
Andrada Măicăneanu ◽  
Cerasella Indolean ◽  
Silvia Burca ◽  
Cornelia Majdik

In this investigation, the removal of Cd2+ ions by a brewery waste biomass in immobilized (Ca-alginate beads) form was studied. The removal process was conducted at room temperature under batch conditions (magnetic stirring) using different initial cadmium concentrations. The equilibrium of biosorption was reached in 150 minutes for all employed initial concentrations. The maximum biosorption capacity was calculated to be 5.96 mg Cd2+ g-1 yeast for an initial Cd2+ concentration of 169 mg L-1. Langmuir and Freundlich adsorption isotherms were used to correlate the equilibrium adsorption data. Based on the correlation coefficients, it was concluded that the Langmuir isotherm is more suitable for describing the equilibrium data of cadmium biosorption. In addition, first and pseudo-second order kinetic models were applied to describe the biosorption process. The kinetic parameters for the pseudo-second order kinetics were determined.


2014 ◽  
Vol 945-949 ◽  
pp. 3483-3488
Author(s):  
Bai Ren Yang ◽  
Dong Xue Liu ◽  
Xian Niu ◽  
Cheng Ding

In order to investigate the biosorption of Cu2+ by anaerobic granular sludge, the effect of equilibrium time, pH, sludge dosage, biosorption kinetics, biosorption thermodynamics and biosorption isotherms had been studied. Results showed that pseudo second-order kinetic model was useful to describe the biosorption process of Cu2+. Both Langmuir and Freundlich isotherm equations could well describe the desorption process at 15-55 °C. Thermodynamic studies showed that the biosorption process was spontaneous and endothermic in nature. When the solution temperature maintained at 35 °C, pH of 6~7, a good biosorption process could be obtained.


2014 ◽  
Vol 12 (1) ◽  
pp. 477-486 ◽  
Author(s):  
Abbas H. Sulaymon ◽  
Ahmed A. Mohammed ◽  
Tariq J. Al-Musawi

Abstract This study aims to evaluate the ability of abundant low-cost garden grass to remove cadmium and chromium ions from aqueous solutions. Batch biosorption studies were carried out to examine the biosorption capacity, pH value, temperature, agitation speed, and metal ions concentration. The biosorption process revealed that the garden grass was an effective biosorbent of cadmium and chromium. The maximum chromium and cadmium removal rate was 90 and 80% at pH 4, respectively. FTIR spectroscopy analysis showed that the hydroxyl, amine, and carboxyl groups were the major groups responsible for the biosorption process. The maximum biosorption capacity was 18.19 and 19.4 mg/g for cadmium and chromium, respectively. The biosorption isotherm data fitted well the Langmuir model. Kinetic data were adequately fitted by the pseudo-second-order kinetic model.


2011 ◽  
Vol 236-238 ◽  
pp. 155-158
Author(s):  
Li Fang Zhang ◽  
Shu Juan Dai ◽  
Ying Ying Chen

In this study, Biosorption of hexavalent chromium ions from aqueous solution by using biomass ofAspergillus nigerwas investigated. Different parameters such as initial pH, biosorbent amount, contact time and temperature were explored. The biosorption of Cr (VI) ions was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent dosage. The biosorption equilibrium was established in about 120min of contact time. Equilibrium uptake of Cr (VI) ions onto biomass increased from 12.57 mg/g at 20°C to 19.48 mg/g at 40 °C for 20mg/L Cr (VI) ions concentration. The biosorption process followed the pseudo-second order kinetic model and the correlation coefficients from the pseudo-second order model were all higher than 0.997 in all studied temperatures. These results suggest that the biomass ofAspergillus nigeris a promising biosorbent for removal of chromium (VI) ions from the wastewater.


Author(s):  
Paul Fabrice Nguema ◽  
Zejiao Luo ◽  
Zachari Mohamadou Mounir ◽  
Lian Jing Jing

Many studies were undertaken on the biosorption potential of different kinds of biomaterials. However, there is a paucity of data regarding the biosorption mechanism of Cr (VI) using dried cells. In our study, the removal of Cr (VI) from aqueous solution was investigated in a batch system by the dried biomass of a chromium-resistant bacterium isolated from activated sludge samples. Equilibrium and kinetic experiments were undertaken at various initial metal concentration, pH, and biosorbent dosage. Bacillus cereus biomass was characterized using Energy-Dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Biosorption process was found to be pH dependent. The optimum pH was found to be 2.0. The Langmuir and Freundlich were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr (VI) onto the biomass. Langmuir and Freundlich models fitted our experimental data. The suitability of the pseudo-first order and pseudo-second order kinetic models for the biosorption of Cr (VI) onto Bacillus cereus was also performed. The mechanism for the adsorption was studied by fitting the kinetic data with the Boyd plot and intra-particle diffusion model. External mass transfer was found to be the rate-determining step. Based on the ionic nature of the metal, the intra-particle diffusion and extent of film diffusion varied. 


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 697 ◽  
Author(s):  
Francisco Alguacil ◽  
Lorena Alcaraz ◽  
Irene García-Díaz ◽  
Félix López

This work describes the adsorption of Pb2+ in aqueous solution onto an activated carbon (AC) produced from winemaking waste (cluster stalks). After characterizing the AC using Fourier transform infrared spectroscopy (FTIR) and micro-Raman spectroscopy, the influence of different physico-chemical factors (stirring rate, temperature, pH, adsorbent concentration, etc.) on its capacity to adsorb Pb2+ was examined. Kinetic and thermodynamic studies showed that the adsorption of the Pb2+ follows a pseudo-second-order kinetic model and fits the Langmuir isotherm model, respectively. The maximum adsorption capacity of the AC was 58 mg/g at 288 K temperature and pH of 4. In conclusion, ACs made from waste cluster stalks could be successfully used to remove Pb2+ from polluted water.


Author(s):  
Fateme Poorsharbaf Ghavi ◽  
Fereshteh Raouf ◽  
Ahmad Dadvand Koohi

Abstract The elimination of diclofenac traces from aqueous environments is important. In this research, the effect of alkaline (NaOH) pretreatment on clinoptilolite before its modification with a surfactant (HDTMA) for diclofenac adsorption under the speculation of the sole presence of diclofenac in the aqueous solution is investigated. The results are compared through isotherm, kinetic, and thermodynamic studies and supplemented by FTIR, SEM, BET, and the zeta potential analyses. The contact time was investigated in a 0–180-min range. The pH effect was studied in a range of 5–10 because of diclofenac dissociation below pH = 5. The effect of the temperature on diclofenac adsorption was also considered by establishing the experiments at 25, 35, and 45 °C. For HDTMA-modified clinoptilolite, Temkin, and for NaOH-HDTMA-modified clinoptilolite, Dubinin–Radushkevich, and Freundlich isotherm models and in both cases, the pseudo-second-order kinetic model fitted the experimental data best. All the enthalpy and the entropy changes were negative, suggesting exothermic adsorption with a decrease in the degree of freedom of diclofenac anions after the adsorption. Furthermore, diclofenac physisorption was confirmed through isotherm and kinetic studies.


Sign in / Sign up

Export Citation Format

Share Document