maize ear rot
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 2)

Plant Disease ◽  
2021 ◽  
Author(s):  
Hua Sun ◽  
Ning Guo ◽  
HongXia Ma ◽  
Shusen Liu ◽  
Jie Shi

Maize (Zea mays L.) is one of three major grain crops in China, with production reaching 261 million tons in 2019(NBS, 2020). Some fungi cause maize ear rot which lead to significant yield and quality losses. In 2016, about 5% of maize ears were dark brown and covered with a white mould in seed production fields in Lingshui, Hainan Province, China. These ears were brought back to the laboratory for analysis. Molded kernels were surface sterilized in 75% ethanol for 3 min and in 10% sodium hypochlorite for 3 min, subsequently rinsed three times in sterile-distilled water, placed onto potato dextrose agar (PDA), and incubated at 28°C in the dark for 3 days. mycelia tips grown from kernels were transferred into fresh PDA plates. Seven fungal isolates with similar morphology characteristics were obtained, and three of them were identified by morphology and molecular identification. The colonies grew rapidly. The aerial mycelia turned white to black with age. Conidia were straight to slightly curved, oval, pyriform or geniculate, brown to dark brown, and had 2 to 7 septa, with both basal and caudal septa thicker and darker than others, 39.47 to 78.66 ×13.96 to 22.78 μm, with a distinctly protruding hilum swelled from the basal cell. Conidiophores were dark brown, with geniculate tip and many septa. For molecular identification, genomic DNA of isolate was extracted from mycelia. The internal transcribed spacer (ITS), 1,3,8-trihydroxynaphthalene reductase (Brn) and glyceraldehyde-3-phosphate dehydrogenase-like (Gpd) genes were amplified with primers ITS1/ITS4 (White et al. 1990), Brn01/Brn02 (Shimizu et al. 1998) and gpd1/gpd 2 (Berbee et al. 1999) , respectively. BLASTn analysis showed that high identities with Exserohilum rostratum (ITS, LT837845.1, 100%; Brn, AY621165.1, 99.87%; Gpd, LT882543.1, 99.75%). Sequences of ITS, Brn and Gpd were deposited in GenBank with accession numbers MW362495, MW363953 and MW363954, respectively. Based on morphological characteristics and molecular analysis, the isolate was identified as E. rostratum (Hernández-Restrepo et al. 2018). Koch’s postulates were completed by using ears of maize inbred line Huangzaosi and Chang7-2 growing in the experimental field of Baoding, Hebei Province. Three days post-silk emergence, each of the four maize ears was injected with 2 ml conidial suspension (1×106 conidia/ml) of isolate ZBSF005 through the silk channel. In the control groups, three ears were inoculated with an equal amount of sterile-distilled water. The inoculated ears grew under natural conditions for 30 days, the diseased kernels and ear tips were black brown and the surface covered with white or gray black mildew layer. The kernels with severe infection were wizened. But the bract could not be infected by the pathogen. Meanwhile, the control remained asymptomatic. The same fungus was successfully re-isolated from the inoculated kernels, and its identity was confirmed by morphological and molecular biology approaches, thus fulfilling Koch’s postulates. E. rostratum has been reported to cause leaf spots in a wide range of hosts, such as Calathea picturata, Lagenaria siceraria, Saccharum officinarum, Ananas comosus, Hevea brasiliensis, Zea mays and so on (Chern et al. 2011; Ahmadpour et al. 2013; Choudhary et al. 2018), and it was also reported to cause root rot in Lactuca saliva (Saad et al. 2019). To our knowledge, this is the first report of E. rostratum causing maize ear rot in China. The pathogen was simultaneously inoculated to 8 maize inbred lines in Hebei province, but the disease only occurred in some varieties and the incidence area was large. Therefore, attention should be paid to the prevention and treatment of ear rot caused by this pathogen in the breeding process.


Plant Disease ◽  
2021 ◽  
Author(s):  
Shusen Liu ◽  
Jinhui Wang ◽  
Ning Guo ◽  
Hua Sun ◽  
HongXia Ma ◽  
...  

Ear rot is one of the most prevalent and destructive diseases on maize. During field surveys in recent years, it was found that a Penicillium ear rot broke out in some areas of Shanxi, Shaanxi, Hebei and Tianjin in China, with an incidence of 3%-90%. A Penicillium sp. was isolated from diseased kernels covered with greyish green mold, and three isolates were identified by morphological and molecular characteristics. The pathogenicity of isolate ZBS205 to maize ears was further determined by artificial inoculation in a field. Furthermore, the sensitivity of isolate ZBS205 against six commonly-used fungicides was also evaluated. According to macro- and micro-morphological characteristics, isolate ZBS205 was generally identical to Talaromyces funiculosus (teleomorph of P. funiculosum). The partial gene sequences of the nuclear ribosomal ITS1-5.8S-ITS2 (ITS) region, β-Tubulin, putative ribosome biogenesis protein (Tsr1) and the second largest subunit of the RNA polymerase II (RPB2) from isolates ZBS205, D49-1 and S73-1 showed the highest nucleotide identity to T. funiculosus strain X33, and the phylogenetic analysis conducted by neighbor-joining method with the combined data of the four genes demonstrated that these three isolates clustered with T. funiculosus strain X33. These results suggested that the fungus isolated from diseased maize kernels was T. funiculosus. Pathogenicity testing showed that the T. funiculosus isolate ZBS205 was pathogenic to maize ears, which showed symptoms of rotted cob and deteriorated kernels. This is the first report of T. funiculosus as the definitive pathogen causing maize ear rot. The result of fungal sensitivity against fungicides showed that pyraclostrobin exhibited the highest toxicity to mycelial growth and could be used as a candidate agent for the prevention and control of T. funiculosus ear rot. Results of the present study provide a basis for understanding ear rot caused by T. funiculosus, and should play an important role in disease management.


Plant Disease ◽  
2020 ◽  
Author(s):  
Guofu Shang ◽  
Huan Yu ◽  
Jie Yang ◽  
Zhu Zeng ◽  
Zuquan Hu

Maize (Zea mays L.), an important food and feed crop worldwide, can be infected by Fusarium pathogens that can contaminate grain with mycotoxins. From August to October in 2018 and 2019, a field survey for maize ear rot was conducted in 76 counties of Guizhou province. The incidence ranged from 3% to 15% at individual fields in different areas. A total of 175 diseased maize ears with similar symptoms, including kernels covered with white, pink or salmon-colored mold or exhibiting a white streaking (“starburst”) symptom, were collected from fields. Symptomatic kernels were surface-sterilized by soaking for 30 s in 70% alcohol and for another 2 min in 2% sodium hypochlorite solution, followed by five rinses with sterile water. Each kernel was cut into half and placed on potato dextrose agar (PDA). After incubation at 28 °C in the dark for 5 days, colonies displaying morphological characteristics of Fusarium were transferred to fresh PDA (Leslie and Summerell 2006). Single-sporing was conducted to purify the putative Fusarium colonies. A total of 120 isolates belonged to 16 Fusarium species were determined and F. meridionale was the dominant species. Five isolates from Huaxi district of Guiyang City were identified as F. miscanthi (Gams et al. 1999). Colonies on PDA were white and floccose, and pigmentation as viewed from the underside of the Petri dish was violet. The average growth rate was 7.5-8.0 mm/day at 28 °C in the dark. In cultures grown on PDA, 0-1-septate microconidia were produced in slimy heads. Microconidia were clavate to fusiform with a truncate base and a broadly rounded tip, 4.8-13.3 μm × 1.8-3.3 μm (n=110). In cultures grown on half-strength CMC broth (Xu et al. 2010), macroconidia were mostly 3-septate, almost straight for most of the length, with a slightly foot-shaped basal cell and curved apical cell that gradually tapered, 17.8-71.3 μm × 2.0-4.3 μm (n=78). The identity of the fungus was confirmed by sequence comparison of the partial translation elongation factor-1α (TEF-1α), RNA polymerase II subunit (RPB2), mitochondrial small subunit rDNA (mtSSU) and β-tubulin genes (Mirete et al. 2004; O’Donnell et al. 2010; O’Donnell and Cigelnik 1997). BLASTn searches of GenBank, using the partial TEF-1α (MN750829), RPB2 (MN750834), mtSSU (MT594104) and β-tubulin (MT584781) sequences of representative isolate GYHXB03 as the queries, revealed 99.84%, 99%, 100% and 100% sequence identity, respectively, to F. miscanthi NRRL 26231 accessions AF324331, JX171634, AF060371 and AF060384. Inoculum of isolate GYHXB03 was prepared (Xu et al. 2010), and a pathogenicity test was conducted on maize hybrid “Shundan7” and repeated twice. A 106/mL spore suspension (2 mL) or sterile water was injected into each of 8 maize ears through the silk channel at the blister stage of reproductive development in field (Duan et al. 2019). After three weeks, typical Fusarium kernel rot symptoms the same as those previously shown in the field was observed on all pathogen-inoculated plants, while the controls were asymptomatic. The pathogens re-isolated from two diseased kernels were identified as F. miscanthi based on morphology and TEF-1α and mtSSU analyses. F. miscanthi was first isolated from Miscanthus sinensis in Denmark (Gams et al. 1999), and also identified from M. × giganteus rhizomes in Belgium (Scauflaire et al. 2013). To our knowledge, this is the first report of F. miscanthi causing maize ear rot in China. This disease should be monitored in Guizhou due to its threat to maize production.


Author(s):  
Masibonge Gxasheka ◽  
Jun Wang ◽  
Busisiwe Gunya ◽  
Vusi Mbanjwa ◽  
Thobela Louis Tyasi ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1539 ◽  
Author(s):  
Q. Du ◽  
C. X. Duan ◽  
S. C. Li ◽  
Z. L. Tang ◽  
J. Y. Luo
Keyword(s):  
Ear Rot ◽  

2020 ◽  
Vol 319 ◽  
pp. 108491
Author(s):  
Antonia Susca ◽  
Alessandra Villani ◽  
Antonio Moretti ◽  
Gaetano Stea ◽  
Antonio Logrieco

Sign in / Sign up

Export Citation Format

Share Document