thermal mechanical analysis
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Yugao Ma ◽  
Jiusong Liu ◽  
Hongxing Yu ◽  
Changqing Tian ◽  
Shanfang Huang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4381
Author(s):  
Seohyun Baek ◽  
Juhyen Lee ◽  
Hyunwoo Kim ◽  
Inhwan Cha ◽  
Changsik Song

Due to growing environmental issues, research on carbon dioxide (CO2) use is widely conducted and efforts are being made to produce useful materials from biomass-derived resources. However, polymer materials developed by a combined strategy (i.e., both CO2-immobilized and biomass-derived) are rare. In this study, we synthesized biomass-derived poly(carbonate-co-urethane) (PCU) networks using CO2-immobilized furan carbonate diols (FCDs) via an ecofriendly method. The synthesis of FCDs was performed by directly introducing CO2 into a biomass-derived 2,5-bis(hydroxymethyl)furan. Using mechanochemical synthesis (ball-milling), the PCU networks were effortlessly prepared from FCDs, erythritol, and diisocyanate, which were then hot-pressed into films. The thermal and thermomechanical properties of the PCU networks were thoroughly characterized by thermogravimetric analysis, differential scanning calorimetry, dynamic (thermal) mechanical analysis, and using a rheometer. The self-healing and recyclable properties of the PCU films were successfully demonstrated using dynamic covalent bonds. Interestingly, transcarbamoylation (urethane exchange) occurred preferentially as opposed to transcarbonation (carbonate exchange). We believe our approach presents an efficient means for producing sustainable polyurethane copolymers using biomass-derived and CO2-immobilized diols.


2020 ◽  
Vol 48 (6) ◽  
pp. 1543-1548 ◽  
Author(s):  
Matteo Vagnoni ◽  
Rene Chavan ◽  
Avelino Mas Sanchez ◽  
Timothy P. Goodman ◽  
Phillip Santos Silva

Minerva ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 43-57
Author(s):  
Saul Jaimes

A thermal-mechanical analysis of the behavior of the segments of the rollers of the briquetting machines is carried out due to the effect of thermal shock and efforts exerted on the part. It is intended to obtain the main causes that generate this problem, through a mechanical analysis that simulated the behavior in the presence of several thermal gradients. The purpose of the study is to reduce maintenance costs and the continuous replacement and repair of segments, as well as losses in tons of production due to the failure that are of great impact to the industry. This investigation allows us to know to what extent the operating parameters, such as: material temperature, pressure, torque, speed of the rollers influence the life of the segments according to their manufacturing material and based on these the behavior is simulated during the briquetting process. Keywords: Simulation, Finite element, Briquettes. [1]D. F. Pinzón, «Diseño óptimo de Sistemas de Distribución,» Universidad Nacional de Colombia, Bogotá, 2014. [2]F. A. Mendoza Lameda, «Diseño multiobjetivo y multietapa de sistemas de distribución de energía eléctrica aplicando algoritmos evolutivos,» Universidad de Zaragoza, Zaragoza, 2010. [3]L. Miró Hernández y R. Vizcón Toledo, «Sistema Hibrido Propuesto Para la Generación de Electricidad en un Policlínico,» Revista Avanzada Científica, vol. 9, nº 2, pp. 50-56, 2006. [4]J. Lagunas M., C. Ortega S. y P. Caratozzolo M., «Control supervisorio para sistemas híbridos de geración eléctrica basado en lógica difusa,» Boletin UE, Monterrey, 2005. [5]J. L. Bernal Agustín, «Aplicación de algoritmos genéticos al diseño óptimo de sistemas de distribución de energía eléctrica,» Universidad de Zaragoza, Zaragoza, 1998. [6]V. MIranda, J. V. Ranito y L. Proenca, «Genetic Algorithms in Optimal Multistage Distribution Network Planning, » IEEE, Porto, 1994. [7]I. Ramirez-Rosado y J. Dominguez-Navarro, «Computer Aided Desing of Power Distribution Systems: Multiobjective Mathematical Simulations» International Journal of Power and Energy Systems, vol. 19, nº 4, pp. 1801-1810, 2004.


Sign in / Sign up

Export Citation Format

Share Document