mutant embryo
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Rina Fujihara ◽  
Naoyuki Uchida ◽  
Toshiaki Tameshige ◽  
Nozomi Kawamoto ◽  
Yugo Hotokezaka ◽  
...  

AbstractThe shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2, is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmental functions remain unknown. This study aimed to analyze the role of EPFL2 during embryogenesis. We found that cotyledon growth was reduced in its loss-of-function mutants, and this phenotype was associated with the reduction of auxin response peaks at the tips of the primordia. The reduced cotyledon size of the mutant embryo recovered in germinating seedlings, indicating the presence of a factor that acted redundantly with EPFL2 to promote cotyledon growth in late embryogenesis. Our analysis indicates that the boundary domain between the cotyledon primordia acts as a signaling center that organizes auxin response peaks and promotes cotyledon growth.


2007 ◽  
Vol 19 (11) ◽  
pp. 3578-3592 ◽  
Author(s):  
Gabriela Carolina Pagnussat ◽  
Hee-Ju Yu ◽  
Venkatesan Sundaresan
Keyword(s):  

Development ◽  
1980 ◽  
Vol 60 (1) ◽  
pp. 295-302
Author(s):  
Mary Mes-Hartree ◽  
John B. Armstrong

Cell-lethal developmental mutations, which are presumed to affect the viability of all cells in a mutant embryo, have been distinguished from other developmental lethals on the basis of the results of parabiosis and transplant experiments. Premature death (p), previously classified as a cell lethal, does not survive parabiosis. However, transplants involving mutant eye, flank epidermis and primordial limb tissue all survived on a normal recipient. The mutant, therefore, cannot be considered a true cell lethal, though it suffers from serious and widespread abnormalities that cannot be corrected by parabiosis. In addition, transplants of mutant branchial mound tissue did not develop into normal gills on a normal recipient. These transplants were the only ones involving mutant endoderm, and their failure supports our hypothesis that the mutation leads to a specific endoderm defect.


Genetics ◽  
1980 ◽  
Vol 95 (4) ◽  
pp. 929-944 ◽  
Author(s):  
M G Neuffer ◽  
William F Sheridan

ABSTRACT A planting of 3,919 M1 kernels from normal ears crossed by EMS-treated pollen produced 3,461 M1 plants and 3,172 selfed ears. These plants yielded 2,477 (72%) total heritable changes; the selfed ears yielded 2,457 (78%) recessive mutants, including 855 (27%) recessive kernel mutants and 8 (0.23%) viable dominant mutants. The ratio of recessive to dominant mutants was 201:l. The average mutation frequency for four known loci was three per 3,172 genomes analyzed. The estimated total number of loci mutated was 535 and the estimated number of kernel mutant loci mutated was 285. Among the 855 kernel mutants, 432 had a nonviable embryo, and 59 germinated but had a lethal seedling. A sample of 194 of the latter two types was tested for heritability, lethality, chromosome arm location and endosperm-embryo interaction between mutant and nonmutant tissues in special hyper-hypoploid combinations produced by manipulation of B-A translocations. The selected 194 mutants were characterized and catalogued according to endosperm phenotype and investigated to determine their effects on the morphology and development of the associated embryo. The possibility of rescuing some of the lethal mutants by covering the mutant embryo with a normal endosperm was investigated. Ninety of these 194 mutants were located on 17 of the 18 chromosome arms tested. Nineteen of the located mutants were examined to determine the effect of having a normal embryo in the same kernel with a mutant endosperm, and vice versa, as compared to the expression observed in kernels with both embryo and endosperm in a mutant condition. In the first situation, for three of the 19 mutants, the mutant endosperm was less extreme (the embryo helped); for seven cases, the mutant endosperm was more extreme (the embryo hindered); and for nine cases, there was no change. In the reverse situation, for four cases the normal endosperm helped the mutant embryo; for 14 cases there was no change and one case was inconclusive.


Sign in / Sign up

Export Citation Format

Share Document