DEFECTIVE KERNEL MUTANTS OF MAIZE. I. GENETIC AND LETHALITY STUDIES

Genetics ◽  
1980 ◽  
Vol 95 (4) ◽  
pp. 929-944 ◽  
Author(s):  
M G Neuffer ◽  
William F Sheridan

ABSTRACT A planting of 3,919 M1 kernels from normal ears crossed by EMS-treated pollen produced 3,461 M1 plants and 3,172 selfed ears. These plants yielded 2,477 (72%) total heritable changes; the selfed ears yielded 2,457 (78%) recessive mutants, including 855 (27%) recessive kernel mutants and 8 (0.23%) viable dominant mutants. The ratio of recessive to dominant mutants was 201:l. The average mutation frequency for four known loci was three per 3,172 genomes analyzed. The estimated total number of loci mutated was 535 and the estimated number of kernel mutant loci mutated was 285. Among the 855 kernel mutants, 432 had a nonviable embryo, and 59 germinated but had a lethal seedling. A sample of 194 of the latter two types was tested for heritability, lethality, chromosome arm location and endosperm-embryo interaction between mutant and nonmutant tissues in special hyper-hypoploid combinations produced by manipulation of B-A translocations. The selected 194 mutants were characterized and catalogued according to endosperm phenotype and investigated to determine their effects on the morphology and development of the associated embryo. The possibility of rescuing some of the lethal mutants by covering the mutant embryo with a normal endosperm was investigated. Ninety of these 194 mutants were located on 17 of the 18 chromosome arms tested. Nineteen of the located mutants were examined to determine the effect of having a normal embryo in the same kernel with a mutant endosperm, and vice versa, as compared to the expression observed in kernels with both embryo and endosperm in a mutant condition. In the first situation, for three of the 19 mutants, the mutant endosperm was less extreme (the embryo helped); for seven cases, the mutant endosperm was more extreme (the embryo hindered); and for nine cases, there was no change. In the reverse situation, for four cases the normal endosperm helped the mutant embryo; for 14 cases there was no change and one case was inconclusive.

2009 ◽  
Vol 35 (12) ◽  
pp. 2167-2173 ◽  
Author(s):  
Jun LI ◽  
Hui-Ting WEI ◽  
Su-Jie YANG ◽  
Chao-Su LI ◽  
Yong-Lu TANG ◽  
...  

Mutagenesis ◽  
2019 ◽  
Author(s):  
Masahiko Watanabe ◽  
Masae Toudou ◽  
Taeko Uchida ◽  
Misato Yoshikawa ◽  
Hiroaki Aso ◽  
...  

Abstract Mutations in oncogenes or tumour suppressor genes cause increases in cell growth capacity. In some cases, fully malignant cancer cells develop after additional mutations occur in initially mutated cells. In such instances, the risk of cancer would increase in response to growth of these initially mutated cells. To ascertain whether such a situation might occur in cultured cells, three independent cultures of human lymphoblastoid GM00130 cells were treated with N-ethyl-N-nitrosourea to induce mutations, and the cells were maintained for 12 weeks. Mutant frequencies and spectra of the cells at the MspI and HaeIII restriction sites located at codons 247–250 of the TP53 gene were examined. Mutant frequencies at both sites in the gene exhibited a declining trend during cell culture and reached background levels after 12 weeks; this was also supported by mutation spectra findings. These results indicate that the mutations detected under our assay conditions are disadvantageous to cell growth.


1971 ◽  
Vol 133 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Margaret J. Polley ◽  
Hans J. Müller-Eberhard ◽  
Joseph D. Feldman

A direct quantitative relationship has been demonstrated between the number of cell bound C4,2 complexes or C5 molecules and the number of ultrastructural lesions visualized on the cell membrane subsequent to immune hemolysis. When bound C4,2 complexes exceeded bound C5 molecules, the number of ultrastructural lesions seen corresponded to the number of C5 molecules. However, in the reverse situation, with bound C5 molecules in excess of bound C4,2 complexes, the latter determined the number of lesions. During the complement-reaction sequence, the lesions first became visible in the nonlytic intermediate complex EAC1,4,2,3,5 and their number was unaffected when lysis was induced by C6–C9. Since the lesions were also demonstrable on the intermediate complex EC5,6,7, it is concluded that the protein C5 is responsible for their production. Once formed, the physical presence of the C5 molecule is no longer required for the manifestation of the lesions as indicated by persistence of lesions after removal of C5 protein by trypsin. The C5-dependent ultra-structural phenomenon has therefore been interpreted to represent a true structural change of the membrane which, however, is not accompanied by a permeability defect.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1158
Author(s):  
Nacer Bellaloui ◽  
Sukumar Saha ◽  
Jennifer L. Tonos ◽  
Jodi A. Scheffler ◽  
Johnie N. Jenkins ◽  
...  

Nutrients, including macronutrients such as Ca, P, K, and Mg, are essential for crop production and seed quality, and for human and animal nutrition and health. Macronutrient deficiencies in soil lead to poor crop nutritional qualities and a low level of macronutrients in cottonseed meal-based products, leading to malnutrition. Therefore, the discovery of novel germplasm with a high level of macronutrients or significant variability in the macronutrient content of crop seeds is critical. To our knowledge, there is no information available on the effects of chromosome or chromosome arm substitution on cottonseed macronutrient content. The objective of this study was to evaluate the effects of chromosome or chromosome arm substitution on the variability and content of the cottonseed macronutrients Ca, K, Mg, N, P, and S in chromosome substitution lines (CS). Nine chromosome substitution lines were grown in two-field experiments at two locations in 2013 in South Carolina, USA, and in 2014 in Mississippi, USA. The controls used were TM-1, the recurrent parent of the CS line, and the cultivar AM UA48. The results showed major variability in macronutrients among CS lines and between CS lines and controls. For example, in South Carolina, the mean values showed that five CS lines (CS-T02, CS-T04, CS-T08sh, CS-B02, and CS-B04) had higher Ca level in seed than controls. Ca levels in these CS lines varied from 1.88 to 2.63 g kg−1 compared with 1.81 and 1.72 g kg−1 for TM-1 and AMUA48, respectively, with CS-T04 having the highest Ca concentration. CS-M08sh exhibited the highest K concentration (14.50 g kg−1), an increase of 29% and 49% over TM-1 and AM UA48, respectively. Other CS lines had higher Mg, P, and S than the controls. A similar trend was found at the MS location. This research demonstrated that chromosome substitution resulted in higher seed macronutrients in some CS lines, and these CS lines with a higher content of macronutrients can be used as a genetic tool towards the identification of desired seed nutrition traits. Also, the CS lines with higher desired macronutrients can be used as parents to breed for improved nutritional quality in Upland cotton, Gossypium hirsutum L., through improvement by the interspecific introgression of desired seed nutrient traits such as Ca, K, P, S, and N. The positive and significant (p ≤ 0.0001) correlation of P with Ca, P with Mg, S with P, and S with N will aid in understanding the relationships between nutrients to improve the fertilizer management program and maintain higher cottonseed nutrient content.


2021 ◽  
Vol 22 (12) ◽  
pp. 6401
Author(s):  
Younglan Lim ◽  
Nam-On Ku

Although hepatocellular carcinoma (HCC) is developed with various etiologies, protection of hepatocytes seems basically essential to prevent the incidence of HCC. Keratin 8 and keratin 18 (K8/K18) are cytoskeletal intermediate filament proteins that are expressed in hepatocytes. They maintain the cell shape and protect cells under stress conditions. Their protective roles in liver damage have been described in studies of mouse models, and K8/K18 mutation frequency in liver patients. Interestingly, K8/K18 bind to signaling proteins such as transcription factors and protein kinases involved in HCC development. Since K8/K18 are abundant cytoskeletal proteins, K8/K18 binding with the signaling factors can alter the availability of the factors. Herein, we discuss the potential roles of K8/K18 in HCC development.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 843
Author(s):  
Balagra Kasim Sumabe ◽  
Synnøve Brandt Ræder ◽  
Lisa Marie Røst ◽  
Animesh Sharma ◽  
Eric S. Donkor ◽  
...  

Drugs targeting DNA and RNA in mammalian cells or viruses can also affect bacteria present in the host and thereby induce the bacterial SOS system. This has the potential to increase mutagenesis and the development of antimicrobial resistance (AMR). Here, we have examined nucleoside analogues (NAs) commonly used in anti-viral and anti-cancer therapies for potential effects on mutagenesis in Escherichia coli, using the rifampicin mutagenicity assay. To further explore the mode of action of the NAs, we applied E. coli deletion mutants, a peptide inhibiting Pol V (APIM-peptide) and metabolome and proteome analyses. Five out of the thirteen NAs examined, including three nucleoside reverse transcriptase inhibitors (NRTIs) and two anti-cancer drugs, increased the mutation frequency in E. coli by more than 25-fold at doses that were within reported plasma concentration range (Pl.CR), but that did not affect bacterial growth. We show that the SOS response is induced and that the increase in mutation frequency is mediated by the TLS polymerase Pol V. Quantitative mass spectrometry-based metabolite profiling did not reveal large changes in nucleoside phosphate or other central carbon metabolite pools, which suggests that the SOS induction is an effect of increased replicative stress. Our results suggest that NAs/NRTIs can contribute to the development of AMR and that drugs inhibiting Pol V can reverse this mutagenesis.


Genetics ◽  
1979 ◽  
Vol 92 (1) ◽  
pp. 151-160
Author(s):  
H Traut

ABSTRACT When females of Drosophila melanogaster are treated with chemical or physical mutagens, not only in one but also in both of the two homologous X chromosomes of a given oocyte, a recessive sex-linked lethal mutation may be induced. A method is described that discriminates between such "single" and "double mutations." A theory is developed to show how a comparison between the expected and the observed frequency of double mutations yields an indication of the intercellular distribution (random or nonrandom) of recessive lethal mutations induced by mutagenic agents in oocytes and, consequently, of the distribution (homogeneous or nonhomogeneous) of those agents.—Three agents were tested: FUdR (12.5, 50.0 and 81.0,μg/ml), mitomycin C (130.0 μg/ml) and X rays (2000 R, 150 kV). After FUdR feeding, no increase in the mutation frequency usually observed in D. melanogaster without mutagenic treatment was obtained (u=0.13%, namely three single mutations among 2332 chromosomes tested). After mitomycin C feeding, 104. single and three double mutations were obtained. All of the 50 mutations observed after X irradiation were single mutations. The results obtained in the mitomycin C and radiation experiments favor the assumption of a random intercellular distribution of recessive lethal mutations induced by these two agents in oocytes of D. melanogaster. Reasons are discussed why for other types of mutagenic agents nonrandom distributions may be observed with our technique.


Sign in / Sign up

Export Citation Format

Share Document