bohmian interpretation
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 35 (39) ◽  
pp. 2050320
Author(s):  
Hrvoje Nikolić ◽  
Josip Atelj

In a microscopic quantum system one cannot perform a simultaneous measurement of particle and wave properties. This, however, may not be true for macroscopic quantum systems. As a demonstration, we propose to measure the local macroscopic current passed through two slits in a superconductor. According to the theory based on the linearized Ginzburg–Landau equation for the macroscopic pseudo wave function, the streamlines of the measured current should have the same form as particle trajectories in the Bohmian interpretation of quantum mechanics. By an explicit computation we find that the streamlines should show a characteristic wiggling, which is a consequence of quantum interference.


Universe ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Isaac Torres ◽  
Júlio César Fabris ◽  
Oliver Fabio Piattella ◽  
Antônio Brasil Batista

We study a quantization via fractional derivative of a nonminimal derivative coupling cosmological theory, namely, the Fab Four John theory. Its Hamiltonian version presents the issue of fractional powers in the momenta. That problem is solved here by the application of the so-called conformable fractional derivative. This leads to a Wheeler–DeWitt equation of second order, showing that a Bohm–de Broglie interpretation can be constructed. That combination of fractional quantization and Bohmian interpretation provides us a new quantization method, in which the quantum potential is the criterion to say if a quantum solution is acceptable or not to be further studied. We show that a wide range of solutions for the scale factor is possible. Among all of those, a bouncing solution analogous to the perfect fluid cosmology seems to deserve special attention.


2017 ◽  
Vol 15 (08) ◽  
pp. 1740001 ◽  
Author(s):  
Hrvoje Nikolić

Most physicists do not have patience for reading long and obscure interpretation arguments and disputes. Hence, to attract attention of a wider physics community, in this paper various old and new aspects of quantum interpretations are explained in a concise and simple (almost trivial) form. About the “Copenhagen” interpretation, we note that there are several different versions of it and explain how to make sense of “local nonreality” interpretation. About the many-world interpretation (MWI), we explain that it is neither local nor nonlocal, that it cannot explain the Born rule, that it suffers from the preferred basis problem, and that quantum suicide cannot be used to test it. About the Bohmian interpretation, we explain that it is analogous to dark matter, use it to explain that there is no big difference between nonlocal correlation and nonlocal causation, and use some condensed-matter ideas to outline how nonrelativistic Bohmian theory could be a theory of everything. We also explain how different interpretations can be used to demystify the delayed choice experiment, to resolve the problem of time in quantum gravity, and to provide alternatives to quantum nonlocality. Finally, we explain why is life compatible with the second law.


2012 ◽  
Vol 10 (08) ◽  
pp. 1241016 ◽  
Author(s):  
HRVOJE NIKOLIĆ

We argue that it is logically possible to have a sort of both reality and locality in quantum mechanics. To demonstrate this, we construct a new quantitative model of hidden variables (HV's), dubbed solipsistic HV's, that interpolates between the orthodox no-HV interpretation and nonlocal Bohmian interpretation. In this model, the deterministic point-particle trajectories are associated only with the essential degrees of freedom of the observer, and not with the observed objects. In contrast with Bohmian HV's, nonlocality in solipsistic HV's can be substantially reduced down to microscopic distances inside the observer. Even if such HV's may look philosophically unappealing to many, the mere fact that they are logically possible deserves attention.


2009 ◽  
Vol 07 (05) ◽  
pp. 1029-1038
Author(s):  
S. MOHAMMADI

According to Standard Quantum Mechanics (SQM), known as the Copenhagen Interpretation, the complete description of a system of particles is provided by its wave function. However, in the de Broglie-Bohm theory of Bohmian Quantum Mechanics (BQM), the additional element which is introduced apart from the wave function is the particle position, conceived in the classical sense as pursuing a definite continuous track in space-time. In BQM formulation, depending on the configuration of the potential barrier and the energy of the packet, the particle trajectories have been shown to take distinct paths. We will consider several barrier heights and show that in a Bohmian interpretation of the problem, there is no such thing as Quantum Tunnelling.


2009 ◽  
Vol 07 (03) ◽  
pp. 595-602 ◽  
Author(s):  
HRVOJE NIKOLIĆ

The kinematic time operator can be naturally defined in relativistic and nonrelativistic quantum mechanics (QM) by treating time on an equal footing with space. The space–time position operator acts in the Hilbert space of functions of space and time. Dynamics, however, makes eigenstates of the time operator unphysical. This poses a problem for the standard interpretation of QM and reinforces the role of alternative interpretations such as the Bohmian one. The Bohmian interpretation, despite of being nonlocal in accordance with the Bell theorem, is shown to be relativistic covariant.


Sign in / Sign up

Export Citation Format

Share Document