pabdeh formation
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Majid Safaei-Farouji ◽  
Mohammadreza Kamali ◽  
Mohammad Hail Hakimi

AbstractGeochemical study of Kazhdumi and Pabdeh Formations as potential source rocks in Gachsaran Oilfield demonstrates that the Kazhdumi Formation has a fair to good capability of hydrocarbon generation and predominately contains type II-III kerogen. On the other hand, the Pabdeh Formation has a poor to good petroleum potential and contains different kerogen types, including type II, type II-III, type III and even for one sample, type IV, indicating different depositional conditions for this formation. The geochemical log of the Kazhdumi Formation shows that there is a close correlation between different geological parameters as noticed prominently in well number 55, which suggests the more extensive the anoxic condition, the higher the petroleum potential is for Kazhdumi Formation. By contrast, a poor correlation between TOC and other Rock–Eval-derived parameters for the Pabdeh Formation at a depth of more than 2100 m may demonstrate the inert organic matter and mineral matrix effects at this depth interval. However, biomarkers show differences in lithology and depositional environment for the Kazhdumi Formation in well numbers 55 and 83. On the other hand, the Pabdeh Formation has a mixed lithology (carbonate-shale) deposited in a marine setting under suboxic–anoxic condition. Moreover, thermal maturity indicators suggest that Pabdeh and Kazhdumi Formations are immature and early mature, respectively.


2021 ◽  
Vol 14 (11) ◽  
Author(s):  
Seyed Hamidreza Azami ◽  
Michael Wagreich ◽  
Maryam Mortazavi Mehrizi ◽  
Mohamad Hosein Mahmudy Gharaie ◽  
Susanne Gier ◽  
...  

AbstractSedimentological and geochemical records are presented for an upper Paleocene to middle Eocene deep-water pelagic succession of the Pabdeh Formation in the Paryab section, Zagros Mountains, NW, Iran. In this study, grain-size statistical parameters, cumulative curves, and bivariate analysis on twenty-five sediment samples were used to decipher depositional processes and paleoenvironments. XRD analysis of the fine-grained silt to clay sediments indicates that quartz, calcite, ankerite/dolomite, and clay minerals such as illite, chlorite, and kaolinite constitute the main minerals within these sediments. Elemental and isotopic chemostratigraphies are used to infer depositional conditions and sea level trends through time. TOC-CaCO3 trends of the samples are used to interpret the type of deposition and sediment accumulation rates, rhythmic bedding, and identification of regressional and transgressional phases. In the studied section, the manganese contents exhibit a declining trend along the lowstand systems tract that terminates in a sea level lowstand and the subsequent start of a transgressive trend. Some geochemical parameters such as Mn values and δ13C contents of sediments along a sequence can be used as potential sea level proxies that are tested in this study. The Paleocene-Eocene Thermal Maximum (PETM) interval of the Pabdeh Formation coincides with increasing Mn contents and Mn/Al ratios. Ti/Al and Si/Al ratios show contrasting trends to Mn values and Mn/Al ratios. Generally, elemental and isotopic results of the Pabdeh Formation confirm the presence of a long-term three-stage sea level cycle in the studied interval that is related to the PETM event. Based on elemental analyses such as Co, Mo, Ni, V, and Cr contents, the Pabdeh Formation sediments were deposited in suboxic to slightly anoxic conditions.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Saeedeh Senemari ◽  
Farah Jalili

AbstractData obtained from the calcareous nannofossils, distributed in the upper part of the Pabdeh Formation (Priabonian–Rupelian) and the lower part of the Asmari Formation (Chattian) in the Bid-Zard section, were used to investigate the Eocene to Oligocene palaeoenvironmental conditions in the southwest of Izeh, southwestern Iran (eastern Tethys). The upper part of the Pabdeh Formation was composed of shale, thin-bedded pelagic limestone and dolostone, which is disconformably overlain by the Asmari Formation. For the first time, 29 species of calcareous nannofossils belonging to 13 genera were identified in the studied section. The calcareous nannofossils in the upper part of the Pabdeh Formation indicate the Isthmolithus recurvus Zone/Sphenolithus pseudoradians Zone (combined zone), Ericsonia subdisticha Zone, Helicosphaera reticulata Zone and Sphenolithus praedistentus Zone, from the Priabonian to the Rupelian. The Sphenolithus ciperoensis Zone of the Chattian was identified in the lower part of the Asmari Formation. Calcareous nannofossil stratigraphy across the upper Eocene–Oligocene interval also reveals a disconformity at the Rupelian/Chattian transition due to a bio-event. Shallowing of the basin and environmental changes in this part of the Tethyan domain could have led to the lithostratigraphic and biostratigraphic changes. In fact, during the late Eocene to late Oligocene, marine phytoplankton was sensitive to climate changes such as decreasing temperature, as well as possibly to a nutrient increase and changes in basin depth.


2020 ◽  
Vol 18 ◽  
pp. 1-22
Author(s):  
B. Alizadeh ◽  
A. Opera ◽  
M. Kalani ◽  
M. Alipour

The Pabdeh Brown Shale Unit (BSU) is an organic-rich calcareous mudstone within the Paleogene Pabdeh Formation, which has not yet been investigated in detail. A total of 166 core and cutting samples were selected from four wells in the Dezful Embayment to investigate the organic geochemical and the mineralogical compositions, as well as the shale oil potential of the BSU. XRD results show that it is mainly comprised of calcite (53wt.%), clay minerals (25wt.%), and quartz (14wt.%). TOC contents generally range from 1 to 9wt.% (avg. 4.2, 2.9, 5.2 and 3.3wt.%, for GS, KR, RR and RS wells, respectively) with HI values ranging between 400 and 650 mg HC/g TOC. Based on average values of T max and vitrinite reflectance, as well as saturate biomarker ratios, the BSU is immature at wells RR and RS (ranging from 0.3 to 0.53%) and its maturity increases northward at wells KR and GS (ranging from 0.5% to 0.67%). The organic matter is dominated by Type ΙΙ kerogen and is generally composed of liptinite and amorphous material with minor terrestrial input. Based on various biomarker parameters, the organic matter was most likely deposited under anoxic marine conditions. The mineralogical characteristics (i.e. presence of brittle minerals) and organic geochemical properties (i.e. TOC 2wt% and Type II kerogen) support the conclusion that the Pabdeh BSU displays a considerable shale oil potential where it attains appropriate thermal maturity. 


Sign in / Sign up

Export Citation Format

Share Document