ice model test
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
HyunSoo Kim ◽  
Erinc Ozden ◽  
Jae-bin Lee

Abstract Countries around the world are increasingly interested in resource development in the Arctic due to global warming. Recently, Arctic coastal states (Russia, USA, Canada, etc.) are pursuing infrastructure construction projects for resource development in the Arctic region. Because the offshore structures in the Arctic are exposed to the sea ice, in order to ensure the safety of the structures, the calculation of the ice resistance is of paramount importance for offshore structures. In general, studies on the ice resistance have been carried out for the breaking and clearing performance of icebreakers. However, in the case of fpu (floating production unit) for resource development in the Arctic region, it is necessary to estimate the ice resistance in the oblique condition to ensure safety. Thus, despite estimation of the ice resistance in the oblique condition is significant, there has not been enough research until recently. In this paper, we suggest algorithms for estimating the ice resistance in the oblique condition. For the estimation process, an in-house code software program is used and an ice resistance estimation module is implemented for the oblique condition using empirical formula. This paper shows results of the ice resistance which was calculated in the oblique condition, and the change of the ice resistance is shown according to various oblique angles in pack ice. In addition, the results are compared to the model test result of a fpu in pack ice of 80% concentration.


Author(s):  
Kyung Duk Park ◽  
Hyun Soo Kim

The ice resistance estimation technique for icebreaking ships has been studied intensively over recent years to meet the need of arctic vessel design. Before testing in the ice model basin, the estimation of ship ice resistance with high reliability is very important to decide the delivered power necessary for level ice operation. The main idea of this study came from several empirical formulas by B.P. Ionov[1], E. Enkvist[2] and J.A. Shimanskii[3], in which ice resistance components such as icebreaking, buoyancy and clearing resistances were represented by the integral equations along the DLWL (Design Load Water Line). However, this study proposes modified methods considering the DLWL shape as well as the hull shape under the DLWL. In the proposed methodology, the DLWL shape for icebreaking resistance and the hull shape under the DLWL for buoyancy and clearing resistances are included in the calculation. Especially when calculating clearing resistance, the flow pattern of ice particles under the DLWL of ship is assumed to be in accordance with the ice flow observed from ice model testing. This paper also deals with application examples for a ship design and its ice model test results at the Aker arctic ice model basin. From the comparison of results from the model test and the estimation, the reliability of this estimation technique is discussed.


2013 ◽  
Vol 779-780 ◽  
pp. 1117-1123
Author(s):  
Jia Ning Zhang ◽  
Yu Chen Shang ◽  
Lei Zhang

Ship model test in ice towing tank is one of the key technologies for the design of ice-strengthened ship, and is the primary measure of determining the ship required minimum engine output power in ice navigation and checking whether satisfies the requirements of ice class rules. Researched the relevant requirements of 1A ice-strengthened ship based on the Finnish-Swedish ice class rules (FSICR), which is minimum engine output power according to the forward form of hull line and according to standard formulas. Studied the technical requirements of ice model test. Determined the minimum engine output power for 110k oil tanker with ice class 1A based on ice model test.


Author(s):  
Per Kristian Bruun ◽  
Sveinung Lo̸set ◽  
Arne Gu¨rtner ◽  
Guido Kuiper ◽  
Ted Kokkinis ◽  
...  

Two large ice model test campaigns were performed in the period 2007–2010 as a part of a Joint Industry Project. The objectives of the project were to investigate different floater geometries and ice model test set-ups (model fixed to a carriage and pushed through the ice vs. ice pushed towards a floating model moored to the basin bottom) and their influence on the ice failure mode and structure responses in the various tested ice conditions. This paper presents the objectives and motivations for the project, the models tested, the target test set-up for the various tested configurations and the test matrix. Initial results from a fixed model tested in three first-year ice ridges with similar target ice properties are also presented and compared. Fixed models of both deep and shallow water platforms were tested in various ice conditions. All models except one had a downward breaking cone at the waterline. The influences of the waterline diameter, the angle of the downward breaking cone and the vertical cone height on the ice failure mode and the resulting ice load were investigated. Tests were conducted in level ice with a thickness ranging from 2 to 3 m and variable ice drift speeds ranging from 0.1 to 1.0 m/s in full scale values. The models were subjected to tests in managed level ice with varying speeds, ice concentrations and ice floe sizes. Fixed structures were also subjected to testing in typical first-year design ice ridge conditions with ridges of different depths and widths, as well as one multi-year ice ridge. One fixed model was also utilised for testing of the repeatability of scaled ice model testing. Moored models with the same waterline geometry as the fixed models were also tested. The moored models were tested in ice conditions similar to those of the fixed models with the objective of comparing their influences on the ice load due to structural responses.


2008 ◽  
Vol 45 (5) ◽  
pp. 562-568 ◽  
Author(s):  
Chun-Ju Lee ◽  
Seong-Rak Cho ◽  
Michael Lau ◽  
Jung-Yong Wang

Author(s):  
Arne Gu¨rtner ◽  
Joachim Berger

The development of oil and gas fields in shallow icy waters, for instance in the Northern Caspian Sea, have increased the awareness of protecting offshore structures by means of ice barriers from the impacts of drifting ice. Protection could be provided by Ice Protection Piles (IPPs), installed in close vicinity to the offshore structure to be protected. Piles then take the main loads from the drifting ice by pre-fracturing the advancing ice sheet. Hence, the partly shielded offshore structure could be designed according to significant lower global design ice loads. In this regard, various configurations of pile arrangements have been model tested during the MATRA-OSE research project in the Ice Model Test Basin of the Hamburg Sip Model Basin (HSVA). The main objective was to analyse the behaviour of ice interactions with the protection piles together with the establishment of design ice loads on an individual pile within the pile arrangement. The pile to pile distances within each arrangement were varied from 2 to 8 times the pile diameter for both, vertical and inclined (30° to the horizontal) pile arrangements. Two test runs with 0.1 m and 0.5 m thick ice (full scale values) were conducted respectively. The full scale water depth was 4 m. Based on the model test observations, it was found that the rubble generation increases with decreasing pile to pile distances. Inclined piles were capable to produce more rubble than vertical piles and considerable lower ice loads were measured on inclined arrangements compared to vertical arrangements. As initial rubble has formed in front of the arrangements, the rubble effect accelerated considerable. Subsequent to the build-up of rubble accumulations, no effect of the pile inclination on the exerted ice loads could be observed. If piles are used as ice barriers, the distance between the piles should be less than 4D for inclined piles and 6D for vertical piles to allow sufficient rubble generation. Larger distances only generated significant ice rubble after initial grounding of the ice had occurred.


Sign in / Sign up

Export Citation Format

Share Document