yeast robustness
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Antonio D. Moreno ◽  
Cristina González-Fernández ◽  
Elia Tomás-Pejó

AbstractIncreasing yeast robustness against lignocellulosic-derived inhibitors and insoluble solids in bioethanol production is essential for the transition to a bio-based economy. This work evaluates the effect exerted by insoluble solids on yeast tolerance to inhibitory compounds, which is crucial in high gravity processes. Adaptive laboratory evolution (ALE) was applied on a xylose-fermenting Saccharomyces cerevisiae strain to simultaneously increase the tolerance to lignocellulosic inhibitors and insoluble solids. The evolved strain gave rise to a fivefold increase in bioethanol yield in fermentation experiments with high concentration of inhibitors and 10% (w/v) of water insoluble solids. This strain also produced 5% (P > 0.01) more ethanol than the parental in simultaneous saccharification and fermentation of steam-exploded wheat straw, mainly due to an increased xylose consumption. In response to the stress conditions (solids and inhibitors) imposed in ALE, cells induced the expression of genes related to cell wall integrity (SRL1, CWP2, WSC2 and WSC4) and general stress response (e.g., CDC5, DUN1, CTT1, GRE1), simultaneously repressing genes related to protein synthesis and iron transport and homeostasis (e.g., FTR1, ARN1, FRE1), ultimately leading to the improved phenotype. These results contribute towards understanding molecular mechanisms that cells might use to convert lignocellulosic substrates effectively.


2021 ◽  
Author(s):  
Fellipe da Silveira Bezerra de Mello ◽  
Alessandro L V Coradini ◽  
Marcelo Falsarella Carazzolle ◽  
Carla Maneira ◽  
Monique Furlan ◽  
...  

Current technology that enables bioethanol production from agricultural biomass imposes harsh conditions for Saccharomyces cerevisiae's metabolism. In this work, the genetic architecture of industrial bioethanol yeast strain SA-1 was evaluated. SA-1 segregant FMY097 was previously described as highly aldehyde resistant and here also as thermotolerant: two important traits for the second-generation industry. A Quantitative Trait Loci (QTL) mapping of 5-hydroxymethylfurfural (HMF) -resistant segregants of hybrid FMY097/BY4742 disclosed a region in chromosome II bearing alleles with uncommon non-synonymous (NS) single nucleotide polymorphisms (SNPs) in FMY097: MIX23, PKC1, SEA4, and SRO77. Allele swap to susceptible laboratory strain BY4742 revealed that SEA4FMY097 enhances robustness towards HMF, but the industrial fitness could not be fully recovered. The genetic network arising from the causative genes in the QTL window suggests that intracellular signaling TOR (Target of Rapamycin) and CWI (Cell Wall Integrity) pathways are regulators of this phenotype in FMY097. Because the QTL mapping did not result in one major allelic contribution to the evaluated trait, a background effect in FMY097's HMF resistance is expected. Quantification of NADPH - cofactor implied in endogenous aldehyde detoxification reactions - supports the former hypothesis, given its high availability in FMY097. Regarding thermotolerance, SEA4FMY097 grants BY4742 ability to grow in temperatures as high as 38 °C in liquid, while allele PKC1FMY097 allows growth up to 40 °C in solid medium. Both SEA4FMY097 and PKC1FMY097 encode rare NS SNPs, not found in other >1,013 S. cerevisiae. Altogether, these findings point towards crucial membrane and stress mediators for yeast robustness.


Yeast ◽  
2006 ◽  
Vol 23 (13) ◽  
pp. 951-962 ◽  
Author(s):  
Ioannis Legouras ◽  
Georgia Xouri ◽  
Sotiris Dimopoulos ◽  
John Lygeros ◽  
Zoi Lygerou

Sign in / Sign up

Export Citation Format

Share Document