scholarly journals Batesian mimicry in the nonrewarding saprophytic orchid Danxiaorchis yangii

2021 ◽  
Author(s):  
Huolin Luo ◽  
Hanwen Xiao ◽  
Yuelong Liang ◽  
Nannan Liu ◽  
Cassidy Turner ◽  
...  
Keyword(s):  
Author(s):  
Graeme D. Ruxton ◽  
William L. Allen ◽  
Thomas N. Sherratt ◽  
Michael P. Speed

This chapter concerns Batesian mimicry, which is the resemblance of a palatable species to an unpalatable or otherwise unprofitable species. Often these unprofitable models have warning signals, which the mimic has evolved to copy. The chapter also considers another well-known form of deception, namely masquerade, which is the resemblance of a palatable species to the cues of an object of no inherent interest to a potential predator such as leaves, thorns, sticks, stones, or bird droppings. Batesian mimicry and masquerade share many properties, and both can be considered examples of ‘protective deceptive mimicry’. We begin by briefly reviewing some well-known examples of protective deceptive mimicry. We then compare and contrast the various theories that have been proposed to understand them. Next, we examine the evidence for the phenomenon and its predicted properties, and finally we address several important questions and controversies, many of which remain only partly resolved.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Marta Skowron Volponi ◽  
Luca Pietro Casacci ◽  
Paolo Volponi ◽  
Francesca Barbero

Abstract Background The endless struggle to survive has driven harmless species to evolve elaborate strategies of deceiving predators. Batesian mimicry involves imitations of noxious species’ warning signals by palatable mimics. Clearwing moths (Lepidoptera: Sesiidae), incapable of inflicting painful bites or stings, resemble bees or wasps in their morphology and sometimes imitate their behaviours. An entirely unexplored type of deception in sesiids is acoustic mimicry. We recorded the buzzing sounds of two species of Southeast Asian clearwing moths, Heterosphecia pahangensis and H. hyaloptera and compared them to their visual model bee, Tetragonilla collina, and two control species of bees occurring in the same habitat. Recordings were performed on untethered, flying insects in nature. Results Based on eight acoustic parameters and wingbeat frequencies calculated from slow-motion videos, we found that the buzzes produced by both clearwing moths highly resemble those of T. collina but differ from the two control species of bees. Conclusions Acoustic similarities to bees, alongside morphological and behavioural imitations, indicate that clearwing moths display multimodal mimicry of their evolutionary models.


2021 ◽  
Author(s):  
David Kikuchi ◽  
Michael Barfield ◽  
Marie E Herberstein ◽  
Johanna Mappes ◽  
Robert D. Holt

Zootaxa ◽  
2021 ◽  
Vol 4941 (4) ◽  
pp. 580-586
Author(s):  
XIN-YU CHEN ◽  
HUA-CHUAN ZHANG ◽  
XIAOXIAO SHI

Eminespina burma gen. et sp. nov., is described and illustrated based on a female embedded in Cretaceous Burmese amber of Cenomanian age. Autapomorphic are three unique spines distributed anterior quarter of pronotum from longer posterior part. The new evidence of Batesian mimicry in the insect fossil record is briefly discussed. 


Nature ◽  
1995 ◽  
Vol 378 (6553) ◽  
pp. 173-175 ◽  
Author(s):  
Naota Ohsaki
Keyword(s):  

2018 ◽  
Vol 116 (3) ◽  
pp. 929-933 ◽  
Author(s):  
Christopher Hassall ◽  
Jac Billington ◽  
Thomas N. Sherratt

Climate-induced changes in spatial and temporal occurrence of species, as well as species traits such as body size, each have the potential to decouple symbiotic relationships. Past work has focused primarily on direct interactions, particularly those between predators and prey and between plants and pollinators, but studies have rarely demonstrated significant fitness costs to the interacting, coevolving organisms. Here, we demonstrate that changing phenological synchrony in the latter part of the 20th century has different fitness outcomes for the actors within a Batesian mimicry complex, where predators learn to differentiate harmful “model” organisms (stinging Hymenoptera) from harmless “mimics” (hoverflies, Diptera: Syrphidae). We define the mimetic relationships between 2,352 pairs of stinging Hymenoptera and their Syrphidae mimics based on a large-scale citizen science project and demonstrate that there is no relationship between the phenological shifts of models and their mimics. Using computer game-based experiments, we confirm that the fitness of models, mimics, and predators differs among phenological scenarios, creating a phenologically antagonistic system. Finally, we show that climate change is increasing the proportion of mimetic interactions in which models occur first and reducing mimic-first and random patterns of occurrence, potentially leading to complex fitness costs and benefits across all three actors. Our results provide strong evidence for an overlooked example of fitness consequences from changing phenological synchrony.


2014 ◽  
Vol 60 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Tim Caro

Abstract Deceptive antipredator defense mechanisms fall into three categories: depriving predators of knowledge of prey’s presence, providing cues that deceive predators about prey handling, and dishonest signaling. Deceptive defenses in terrestrial vertebrates include aspects of crypsis such as background matching and countershading, visual and acoustic Batesian mimicry, active defenses that make animals seem more difficult to handle such as increase in apparent size and threats, feigning injury and death, distractive behaviours, and aspects of flight. After reviewing these defenses, I attempt a preliminary evaluation of which aspects of antipredator deception are most widespread in amphibians, reptiles, mammals and birds.


Sign in / Sign up

Export Citation Format

Share Document