microbial electrocatalysis
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 2)

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 291
Author(s):  
Marzuqa Quraishi ◽  
Kayinath Wani ◽  
Soumya Pandit ◽  
Piyush Kumar Gupta ◽  
Ashutosh Kumar Rai ◽  
...  

Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy.


2019 ◽  
Vol 7 (10) ◽  
pp. 372 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Kakade ◽  
Kulshreshtha ◽  
Liu ◽  
...  

Microbial electrocatalysis is an electro reaction that uses microorganisms as a biocatalyst, mainly including microbial electrolytic cells (MEC) and microbial fuel cells (MFC), which has been used for wastewater treatment. However, the low processing efficiency is the main drawback for its practical application and the additional energy input of MEC system results in high costs. Recently, MFC/MEC coupled with other treatment processes, especially membrane bioreactors (MBR), has been used for high efficiency and low-cost wastewater treatment. In these systems, the wastewater treatment efficiency can be improved after two units are operated and the membrane fouling of MBR can also be alleviated by the electric energy that was generated in the MFC. In addition, the power output of MFC can also reduce the energy consumption of microbial electrocatalysis systems. This review summarizes the recent studies about microbial electrocatalysis systems coupled with MBR, describing the combination types and microorganism distribution, the advantages and limitations of the systems, and also addresses several suggestions for the future development and practical applications.


2018 ◽  
Vol 6 ◽  
Author(s):  
Abhijeet P. Borole ◽  
Costas Tsouris ◽  
Spyros G. Pavlostathis ◽  
Sotira Yiacoumi ◽  
Alex J. Lewis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document