Numerical analyses of joint with steel endplates, headed stud anchors and concrete cross-beam in continuous steel-concrete composite girder bridges

Author(s):  
Bruno Briseghella ◽  
Junping He ◽  
Junqing Xue ◽  
Zordan Tobia

<p>Short and medium span continuous steel-concrete composite (SCC) girder bridges are becoming more and more popular. The problems caused by the negative bending moment in the continuous SCC girders cannot be ignored. In order to investigate the performances of the continuous joints between adjacent SCC girders, consist of steel endplates and headed shear stud connected to concrete cross-beam, the finite element model was built by using ABAQUS software, of which the accuracy was verified by experimental results. The parametric analyses were carried out to investigate the influences of the strength and reinforcement ratio of the concrete slabs in SCC girders, and the diameters of the horizontal headed shear studs on the performances of the joints. The ultimate moment capacity of the joint increases with the increase in the strength and reinforcement ratio of concrete slab and the diameters of the horizontal headed shear studs.</p>

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Pu Gao ◽  
Kuan Li ◽  
Yuanxun Zheng

The experimental work presents results on the fatigue performance of composite beams in the negative moment region and the changes of stiffness and deformation of composite beams under repeated loads; fatigue tests were carried out on two double-layer composite beams. The fatigue performance of composite beams with different reinforcement ratios under complete shear connection and the variation of deflection, strain of the reinforcement, strain of steel beam, and crack growth under fatigue load were obtained. The results showed that the fatigue resistance performance of concrete slab with low reinforcement ratio was much lower than that of concrete slab with high reinforcement ratio whereas, under the fatigue load, the stress of the welding nail in the negative moment region was small and the slip was almost negligible. The degradation of stiffness and the development of cracks were mainly due to the degradation of bond-slip between the concrete and reinforcement. The fatigue failure mode was the fracture of the upper reinforcement in negative moment region. The results obtained in this study are helpful in the design of composite beam.


Author(s):  
Hang Su ◽  
Qingtian Su ◽  
Wensheng Yu ◽  
Yunjin Wang ◽  
Minghui Zeng

<p>Cracking of concrete slab in the negative bending moment region of continuous composite girders is a key problem which needs to be solved in the design of continuous composite girder bridges. The main reason of concrete cracking in the negative bending moment region of continuous composite girder is tensile stress under the effects of temperature and load in the portion of integration. The paper gives the method of partial-combination to connect steel girder with concrete slab, that is, a rubber sleeve is placed on the stud of the negative bending moment region to increase the slip between the concrete slab and the steel girder at the joint. Two specimens of negative bending moment region are designed to observe the mechanical properties in the negative bending moment region of composite girders when using the method of partial-combination. The advantages and disadvantages of the partial-combination method are analysed.</p>


2021 ◽  
Author(s):  
Ahmed Diab ◽  
Khaled Sennah

In bridge analysis, designers calculate maximum bending moment, MT, and shear force, VT, of a bridge girder under truck loading, then use available truck fraction, FT to generate the longitudinal live load effects. This Thesis presents structural analysis of different girder configurations subjected to CL-W truck loading. Girder geometries include single-, two-, three- and four-span girders. The maximum shear, deflection and moments were plotted and then used to develop equations to represent their values. Furthermore, a software was developed to perform composite steel I-girder design. The software optimizes the I-girder size based on CHBDC design procedure. Using the developed software, a parametric study was conducted to determine the required composite moment of inertia, moment of inertia of the bare steel section and steel web area to satisfy all design requirements. Empirical equations for these three properties were developed to assist bridge designers in estimating steel I-section sizes for contract bidding.


2021 ◽  
Author(s):  
Ahmed Diab ◽  
Khaled Sennah

In bridge analysis, designers calculate maximum bending moment, MT, and shear force, VT, of a bridge girder under truck loading, then use available truck fraction, FT to generate the longitudinal live load effects. This Thesis presents structural analysis of different girder configurations subjected to CL-W truck loading. Girder geometries include single-, two-, three- and four-span girders. The maximum shear, deflection and moments were plotted and then used to develop equations to represent their values. Furthermore, a software was developed to perform composite steel I-girder design. The software optimizes the I-girder size based on CHBDC design procedure. Using the developed software, a parametric study was conducted to determine the required composite moment of inertia, moment of inertia of the bare steel section and steel web area to satisfy all design requirements. Empirical equations for these three properties were developed to assist bridge designers in estimating steel I-section sizes for contract bidding.


2019 ◽  
Vol 9 (11) ◽  
pp. 2235 ◽  
Author(s):  
Linli Duan ◽  
Xin Nie ◽  
Ran Ding ◽  
Liangdong Zhuang

Tensile stresses and cracks in concrete slabs induced by a hogging moment have always been a disadvantage of steel-concrete composite structures and key issue of concern in the design of such structures. To reduce the tensile stress and control the crack width of the reinforced concrete (RC) slab, a new type of connector, called the uplift-restricted and slip-permitted (URSP) connector has been proposed and successfully applied in the area subjected to a negative bending moment in steel-concrete composite bridges. The feasibility of the URSP connector in steel-concrete composite frame buildings is investigated in this study based on a comprehensive parametric analysis. The effects of URSP connectors on the cracking behavior, as well as the stiffness and strength of composite frames, are systematically analyzed using an elaborate finite element model, which resembles a typical composite beam-column joint subjected to both lateral loads and vertical loads. In addition, an optimized arrangement length of URSP connectors is proposed for practical design. The research findings indicate that the application of URSP connectors greatly improves the crack resistance of RC slabs without an obvious reduction of the ultimate capacity and lateral stiffness of the composite frame. It is recommended that the distribution length of URSP connectors at each beam end should be 20–25% of the frame beam length.


2017 ◽  
Vol 27 (4) ◽  
pp. 5-15 ◽  
Author(s):  
Iwona Jankowiak ◽  
Arkadiusz Madaj

Abstract One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 479
Author(s):  
Wei Wang ◽  
Xie-dong Zhang ◽  
Fa-xing Ding ◽  
Xi-long Zhou

High-strength bolted shear connectors (HSBSCs), which can be demounted easily and efficiently during deconstruction, are recommended to replace the conventional steel studs in steel–concrete composite beams (SCCBs) to meet the requirements of sustainable development. The existing investigations on the behavior of HSBSCs mainly focus on the positive moment area of composite beams, in which the concrete slab is in compress condition. In this paper, a three-dimensional finite element model (FEM) was developed to investigate the performance of HSBSCs subjected to inverse push-off loading. Material nonlinearities and the interactions among all components were included in the FEM. The accuracy and reliability of the proposed FEM were initially validated against the available push-off test results. Load-carrying capacity and load–slip response of the HSBSCs under inverse push-off loading were further studied by the verified FEM. A parametric study was carried out to determine the influence of the concrete strength, the diameter and tensile strength of bolt and the clearance between the concrete slab and the bolt as well as the bolt pretension on the shear performance of HSBSCs. Based on the extensive parametric analyses, design recommendations for estimating the shear load at the first slip and load-bearing resistance of HSBSCs were proposed and verified.


2019 ◽  
Vol 16 (2) ◽  
pp. 103
Author(s):  
E.S.A. Bayoumi ◽  
A.G. Asran ◽  
M.A. Eliwa ◽  
M.A. Alkersh

This paper investigates the effects of construction errors during the implementation of reinforced concrete T-beams. These errors are classified into two main sections. The first focuses on the position and ratio of reinforcing bars, while the other is related to the concrete strength.  A total of ten specimens of T-beams were tested to assess the effect of the possible defects in the construction sites, viz. impact of misplacement of slab reinforcement, irregular arrangement of slab reinforcement, the change in bar diameter of slab reinforcement and the effect of casting method of concrete on the structural behavior of T-beam sections. The results indicated that the faulty placement of slab reinforcement leads to a lower bending moment capacity of the slab (brittle behavior) and the steel strain of slab decreases as the height of slab reinforcement decreases. The irregularity of the reinforcing bars in concrete slab affects the ultimate load carrying capacity of the slab. Also, it was found out that well-arranged distribution of reinforcement improves the ductile behavior of the slab and reduces the corresponding deflections.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5801-5811
Author(s):  
Wengang Hu ◽  
Na Liu

This study aimed to obtain a better method for establishing a finite element model of mortise-and-tenon (M-T) joints. Three types of M-T joint finite element models, which included a whole rigid model, a tie rigid model, and a semi-rigid model, were established and compared with experimental results by predicting the bending moment capacity (BMC) of M-T joints based on the finite element method (FEM). The results showed that the semi-rigid model performed much better than the tie rigid model, followed by the whole rigid model. For the semi-rigid model, the ratios of FEM ranged from 0.85 to 1.09. For the whole rigid model and tie rigid model, the BMC of the M-T joint was overestimated. In addition, the results showed that tenon size remarkably affected the BMC and stiffness of the M-T joint, and tenon width had a greater effect on the BMC of the M-T joint than the tenon length.


Sign in / Sign up

Export Citation Format

Share Document