gene pair
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 60)

H-INDEX

26
(FIVE YEARS 4)

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jiaxin Fan ◽  
Mengying Chen ◽  
Shuai Cao ◽  
Qingling Yao ◽  
Xiaodong Zhang ◽  
...  

Abstract Background Ischemic stroke (IS) is a principal contributor to long-term disability in adults. A new cell death mediated by iron is ferroptosis, characterized by lethal aggregation of lipid peroxidation. However, a paucity of ferroptosis-related biomarkers early identify IS until now. This study investigated potential ferroptosis-related gene pair biomarkers in IS and explored their roles in immune infiltration. Results In total, we identified 6 differentially expressed ferroptosis-related genes (DEFRGs) in the metadata cohort. Of these genes, 4 DEFRGs were incorporated into the competitive endogenous RNA (ceRNA) network, including 78 lncRNA-miRNA and 16 miRNA-mRNA interactions. Based on relative expression values of DEFRGs, we constructed gene pairs. An integrated scheme consisting of machine learning algorithms, ceRNA network, and gene pair was proposed to screen the key DEFRG biomarkers. The receiver operating characteristic (ROC) curve witnessed that the diagnostic performance of DEFRG pair CDKN1A/JUN was superior to that of single gene. Moreover, the CIBERSORT algorithm exhibited immune infiltration landscapes: plasma cells, resting NK cells, and resting mast cells infiltrated less in IS samples than controls. Spearman correlation analysis confirmed a significant correlation between plasma cells and CDKN1A/JUN (CDKN1A: r = − 0.503, P < 0.001, JUN: r = − 0.330, P = 0.025). Conclusions Our findings suggested that CDKN1A/JUN could be a robust and promising gene-pair diagnostic biomarker for IS, regulating ferroptosis during IS progression via C9orf106/C9orf139-miR-22-3p-CDKN1A and GAS5-miR-139-5p/miR-429-JUN axes. Meanwhile, plasma cells might exert a vital interplay in IS immune microenvironment, providing an innovative insight for IS therapeutic target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaonan Zheng ◽  
Xianghong Zhou ◽  
Hang Xu ◽  
Di Jin ◽  
Lu Yang ◽  
...  

Immunotherapy has been a milestone for muscle-invasive bladder cancer (MIBC), but only a small portion of patients can benefit from it. Therefore, it is crucial to develop a robust individualized immune-related signature of MIBC to identify patients potentially benefiting from immunotherapy. The current study identified patients from the Cancer Genome Atlas (TCGA) and immune genes from the ImmPort database, and used improved data analytical methods to build up a 45 immune-related gene pair signature, which could classify patients into high-risk and low-risk groups. The signature was then independently validated by a Gene Expression Omnibus (GEO) dataset and IMvigor210 data. The subsequent analysis confirmed the worse survival outcomes of the high-risk group in both training (p &lt; 0.001) and validation cohorts (p = 0.018). A signature-based risk score was proven to be an independent risk factor of overall survival (p &lt; 0.001) and could predict superior clinical net benefit compared to other clinical factors. The CIBERSORT algorithm revealed the low-risk group had increased CD8+ T cells plus memory-activated CD4+ T-cell infiltration. The low-risk group also had higher expression of PDCD1 (PD-1), CD40, and CD27, and lower expression of CD276 (B7-H3) and PDCD1LG2 (PD-L2). Importantly, IMvigor210 data indicated that the low-risk group had higher percentage of “inflamed” phenotype plus less “desert” phenotype, and the survival outcomes were significantly better for low-risk patients after immunotherapy (p = 0.014). In conclusion, we proposed a novel and promising prognostic immune-related gene pair (IRGP) signature of MIBC, which could provide us a panoramic view of the tumor immune microenvironment of MIBC and independently identify MIBC patients who might benefit from immunotherapy.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1502
Author(s):  
Alice Montino ◽  
Karthi Balakrishnan ◽  
Stefan Dippel ◽  
Björn Trebels ◽  
Piotr Neumann ◽  
...  

Olfaction is crucial for insects to find food sources, mates, and oviposition sites. One of the initial steps in olfaction is facilitated by odorant-binding proteins (OBPs) that translocate hydrophobic odorants through the aqueous olfactory sensilla lymph to the odorant receptor complexes embedded in the dendritic membrane of olfactory sensory neurons. The Tribolium castaneum (Coleoptera, Tenebrionidae) OBPs encoded by the gene pair TcasOBP9A and TcasOBP9B represent the closest homologs to the well-studied Drosophila melanogaster OBP Lush (DmelOBP76a), which mediates pheromone reception. By an electroantennographic analysis, we can show that these two OBPs are not pheromone-specific but rather enhance the detection of a broad spectrum of organic volatiles. Both OBPs are expressed in the antenna but in a mutually exclusive pattern, despite their homology and gene pair character by chromosomal location. A phylogenetic analysis indicates that this gene pair arose at the base of the Cucujiformia, which dates the gene duplication event to about 200 Mio years ago. Therefore, this gene pair is not the result of a recent gene duplication event and the high sequence conservation in spite of their expression in different sensilla is potentially the result of a common function as co-OBPs.


Author(s):  
Zi-Hao Wang ◽  
Yu Li ◽  
Pei Zhang ◽  
Xuan Xiang ◽  
Xiao-Shan Wei ◽  
...  

The role of autophagy in lung cancer is context-dependent and complex. Recent studies have reported the important role of autophagy in tumor immune escape. However, the association between autophagy and tumor-infiltrating lymphocytes (TILs) in early-stage lung adenocarcinoma (LUAD) remains unclear. In this study, we aimed to develop and validate the autophagy-related gene pair index (ATGPI) and autophagy clinical prognostic index (ACPI) in multiple LUAD cohorts, including The Cancer Genome Atlas (TCGA) cohort, Gene Expression Omnibus cohorts, and one cohort from Union Hospital, Wuhan (UH cohort), using a Cox proportional hazards regression model with the least absolute shrinkage and selection operator. Multivariate Cox regression analysis demonstrated that there was a significant difference in overall survival (OS) between patients with high and low ATGPI in the testing [hazard ratio (HR) = 1.97; P &lt; 0.001] and TCGA validation (HR = 2.25; P &lt; 0.001) cohorts. Time-dependent receiver operating characteristic curve analysis was also performed. We found that high ATGPI could accurately identify patients with early-stage LUAD with shorter OS, with the areas under the curve of 0.703 and 0.676 in the testing and TCGA validation cohorts, respectively. Concordance index (C-index) was used to evaluate the efficiency of ATGPI and ACPI. The C-index of ACPI was higher than that of ATGPI in the testing (0.71 vs. 0.66; P &lt; 0.001), TCGA validation (0.69 vs. 0.65; P = 0.028), and UH (0.80 vs. 0.70; P = 0.015) cohorts. TIL analysis demonstrated that the proportions of tumor-infiltrating CD4+ T cells were lower in the high-ATGPI group than in the low-ATGPI group in both the TCGA validation and UH cohorts. These results indicate the potential clinical use of ATG signatures which are associated with TILs, in identifying patients with early-stage LUAD with different OS.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhengfa Xue ◽  
Shuxin Yang ◽  
Yun Luo ◽  
Hao Cai ◽  
Ming He ◽  
...  

Background and Purpose: Pathological response status is a standard reference for the early evaluation of the effect of neoadjuvant chemoradiation (nCRT) on locally advanced rectal cancer (LARC) patients. Various patients respond differently to nCRT, but identifying the pathological response of LARC to nCRT remains a challenge. Therefore, we aimed to identify a signature that can predict the response of LARC to nCRT.Material and Methods: The gene expression profiles of 111 LARC patients receiving fluorouracil-based nCRT were used to obtain gene pairs with within-sample relative expression orderings related to pathological response. These reversal gene pairs were ranked according to the mean decrease Gini index provided by the random forest algorithm to obtain the signature. This signature was verified in two public cohorts of 46 and 42 samples, and a cohort of 33 samples measured at our laboratory. In addition, the signature was used to predict disease-free survival benefits in a series of colorectal cancer datasets.Results: A 41-gene pair signature (41-GPS) was identified in the training cohort with an accuracy of 84.68% and an area under the receiver operating characteristic curve (AUC) of 0.94. In the two public test cohorts, the accuracy was 93.37 and 73.81%, with AUCs of 0.97 and 0.86, respectively. In our dataset, the AUC was 0.80. The results of the survival analysis show that 41-GPS plays an effective role in identifying patients who will respond to nCRT and have a better prognosis.Conclusion: The signature consisting of 41 gene pairs can robustly predict the clinical pathological response of LARC patients to nCRT.


2021 ◽  
Author(s):  
Tianwei Sun ◽  
Qixing Tan ◽  
Changyuan Wei

Abstract Background: Breast cancer (BC) is the cancer with the largest number of deaths in women. There is growing evidence that immunity plays an important role in the prognosis of breast cancer. Methods: In this study, we developed and validated an immune-related gene pair signature (IRGPs) to predict the survival of breast cancer patients. Screening immune-related genes from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database for the construction of IRGPs, and patients with breast cancer in these two cohorts were assigned to low- and high- risk subgroups. Additionally, we used Kaplan-Meier survival analysis, univariate and multivariate Cox analysis to investigate IRGPs and their individualized prognostic characteristics, and analysis of immune cell infiltration in breast cancer. Results: A 47-IRGP signature was constructed from 2498 immune genes, which could significantly predict the overall survival (OS) of breast cancer patients in the TCGA and GEO cohorts. Immune infiltration analysis showed that a variety of immune cells are significantly related to the prognostic effects of IRGP characteristics in breast cancer patients, especially CD8+ T cells and macrophages. Conclusions: The IRGP signature constructed in this study can help determine the prognosis of breast cancer and provide new ideas and basis for future research on the role of immune-related genes in breast cancer patients.


Nature Plants ◽  
2021 ◽  
Author(s):  
Narayana M. Upadhyaya ◽  
Rohit Mago ◽  
Vinay Panwar ◽  
Tim Hewitt ◽  
Ming Luo ◽  
...  

2021 ◽  
Author(s):  
Samuel S Freeman ◽  
Moshe Sade-Feldman ◽  
Jaegil Kim ◽  
Chip Stewart ◽  
Anna L. K. Gonye ◽  
...  

Cancer immunotherapy with checkpoint blockade (CPB) leads to improved outcomes in melanoma and other tumor types, but a majority of patients do not respond. High tumor mutation burden (TMB) and high levels of tumor-infiltrating T cells have been associated with response to immunotherapy, but integrative models to predict clinical benefit using DNA or RNA alone have not been comprehensively explored. We sequenced DNA and RNA from melanoma patients receiving CPB, and aggregated previously published data, yielding whole exome sequencing data for 189 patients and bulk RNA sequencing data for 178 patients. Using these datasets, we derived genomic and transcriptomic factors that predict overall survival (OS) and response to immunotherapy. Using whole-exome DNA data alone, we calculated T cell burden (TCB) and B cell burden (BCB) based on rearranged TCR/Ig DNA sequences and found that patients whose melanomas have high TMB together with either high TCB or high BCB survived longer and had higher response rates as compared to patients with either low TMB or TCB/BCB. Next, using bulk RNA-Seq data, differential expression analysis identified 83 genes associated with high or low OS. By combining pairs of immune-expressed genes with tumor-expressed genes, we identified three gene pairs associated with response and survival (Bonferroni P<0.05). All three gene pair models were validated in an independent cohort (n=180) (Bonferroni P<0.05). The best performing gene pair model included the lymphocyte-expressed MAP4K1 (Mitogen-Activated Protein Kinase Kinase Kinase Kinase 1) combined with the transcription factor TBX3 (T-Box Transcription Factor 3) which is overexpressed in poorly differentiated melanomas. We conclude that RNA-based (MAP4K1&TBX3) or DNA-based (TCB&TMB) models combining immune and tumor measures improve predictions of outcome after checkpoint blockade in melanoma.


Author(s):  
Tomohiro Morohoshi ◽  
Kanako Nameki ◽  
Nobutaka Someya

Abstract We present the complete genome sequences of three Erwinia rhapontici strains, MAFF 311153, 311154, and 311155. These chromosome sequences contained variety types of luxI/luxR gene pair involved in acylhomoserine lactone (AHL) biosynthesis and reception. Large-scale insertion sequence was observed in the indigenous plasmid of MAFF 311154 and contained eraI3/eraR3 gene pair which make possible to produce acylhomoserine lactone.


Sign in / Sign up

Export Citation Format

Share Document