Investigation of thermal flow structure and performance heat transfer in three‐dimensional circular pipe using twisted tape based on Taguchi method analysis

Heat Transfer ◽  
2021 ◽  
Author(s):  
Ahmed Ramadhan Al‐Obaidi
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1992 ◽  
Vol 114 (4) ◽  
pp. 795-806 ◽  
Author(s):  
D. J. Dorney ◽  
R. L. Davis

A three-dimensional Navier–Stokes analysis of heat transfer and aerodynamic performance is presented for a low-speed linear turbine cascade. The numerical approach used in this analysis consists of an alternate-direction, implicit, approximate-factorization, time-marching technique. An objective of this investigation has been to establish the computational grid density requirements necessary to predict blade surface and endwall heat transfer accurately, as well as the exit plane aerodynamic total pressure loss and flow angle distributions. In addition, a study has been performed to determine the importance of modeling transition as well as a viable implementation strategy for the three-dimensional turbulence model in the turbine blade passage. Results are presented demonstrating that the present procedure can accurately predict three-dimensional turbine blade heat transfer as well as the absolute level and spanwise distribution of aerodynamic performance quantities.


2020 ◽  
pp. 321-321
Author(s):  
Yunsong Zhang ◽  
Yongbao Liu ◽  
Yujie Li ◽  
Qijie Li

In this paper, the effects of shroud movement on transonic flow and heat transfer in the vicinity of turbine tip was studied by using three-dimensional simulation of GE-E3 first-stage HPT. Aerothermal performance and flow structure were analyzed with and without turbine shroud moving, respectively. Based on the distribution of limiting streamlines and the vortex structures, the influential characteristics between the leakage flow and the secondary flow generated by shroud movement were studied. Moreover, the coefficient of heat transfer at the wall were investigated. Results show that the flow structure is changing with the movement of turbine shroud, and the location of the separation line changes significantly by the influence of the secondary flow. The leakage vortex initial location delayed in axial direction and its breakdown point located at 65% cross section. This accelerates the mixing loss and increase the perturbation. In addition, it is observed that the coefficient of average heat transfer is increased obviously by 54.8% in the region of shroud surface. However, this coefficient in the region of suction surface decreased by 11.9%.


2020 ◽  
Author(s):  
Li Wang ◽  
Peiyong Ni ◽  
Guannan Xi

Abstract This study is conducted to investigate the effect of off-center placement of twisted tape on flow distribution and heat transfer in a circular tube. The effect of tape width of 20, 18, 16, 14 and 12 mm on the heat transfer performance is discussed under the same twist ratio of 2.0. The numerical analysis of the flow field, average Nusselt number, friction factor and thermo-hydraulic performance parameter of the tube are discussed with Reynolds number ranged from 2600 to 8760. The results indicate that the Nusselt number of the tube fitted with center-placed twisted tapes at various width is 7~51% higher than the plain tube, and performance in low Reynolds region was found more effective than that in high Reynolds region. The heat transfer for circular tube with twisted tape attached to the wall shows better performance than that for the tube with center-placed twisted tape. With a smaller tape width, a higher increasing ratio of Nu-wall/Nu-center is obtained. The increasing ratio for Nusselt number ranged from 3 to 18%. However, the use of twisted tape inserts is not beneficial for energy saving. The thermo-hydraulic performance parameters for convective heat transfer of helium gas flowing in a circular tube are below unity for the calculated Reynolds region.


Sign in / Sign up

Export Citation Format

Share Document