torsionally stiff
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Karim Meleka

Current Canadian Highway Bridge Design Code includes design provisions to establish live load demands in (i) reinforced concrete decks over longitudinal girders, (ii) orthotropic deck over longitudinal girders, and (iii) orthotropic deck over transverse beams. However, it only provides an equation for factored applied moment on concrete deck under single point load. Similar equations for orthotropic decks are as yet unavailable. As such, parametric study was conducted to lead to new empirical expressions for moment in bridge decks subjected to truck wheel loading considering each of the three cases of orthotropy: (i) relatively torsionally stiff, flexurally soft decks; (ii) relatively uniformly thick decks; and (iii) relatively torsionally soft, flexurally stiff decks. Using the proposed formulations, bridge deck design can be treated in a unified way across different deck types, accounting for longitudinal-transverse flexural rigidity of decks. Application of these methods can significantly simplify the analysis of decks and allow bridge engineers to make comparisons across different deck design alternatives.


2021 ◽  
Author(s):  
Karim Meleka

Current Canadian Highway Bridge Design Code includes design provisions to establish live load demands in (i) reinforced concrete decks over longitudinal girders, (ii) orthotropic deck over longitudinal girders, and (iii) orthotropic deck over transverse beams. However, it only provides an equation for factored applied moment on concrete deck under single point load. Similar equations for orthotropic decks are as yet unavailable. As such, parametric study was conducted to lead to new empirical expressions for moment in bridge decks subjected to truck wheel loading considering each of the three cases of orthotropy: (i) relatively torsionally stiff, flexurally soft decks; (ii) relatively uniformly thick decks; and (iii) relatively torsionally soft, flexurally stiff decks. Using the proposed formulations, bridge deck design can be treated in a unified way across different deck types, accounting for longitudinal-transverse flexural rigidity of decks. Application of these methods can significantly simplify the analysis of decks and allow bridge engineers to make comparisons across different deck design alternatives.


2021 ◽  
Vol 66 (1) ◽  
pp. 1-13
Author(s):  
Vellingiri Ramanujam R ◽  
Ranjith Mohan

This paper investigates three-dimensional aerodynamic effects due to radial flow on lead–lag damping of a rotor in forward flight conditions. Three-dimensional effects in this study are restricted to yawed flow aerodynamics and radial flow coupling between blade segments. These effects are included in the ONERA dynamic stall model, and lead–lag damping for an isolated torsionally stiff rotor is calculated for different forward flight conditions. This augmented aerodynamic model with three-dimensional effects and Peters–He dynamic wake model improves the correlation of lead–lag damping with experimental data at high advance ratios. The effect of modeling static lift characteristics on damping correlation is also presented. Finally, a modification to the trailing edge separation point–based static lift model for improved yawed flow modeling amenable to aeromechanical stability analysis is proposed.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Hamed Eivani ◽  
Abdolreza S. Moghadam ◽  
Armin Aziminejad ◽  
Masoud Nekooei

The seismic behavior of asymmetric structures with a flexible diaphragm was studied by conducting inelastic dynamic time-history analyses. Asymmetric structures with different configurations of mass, stiffness, and strength centers, in combination with a wide range of diaphragm flexibility, were evaluated. The behavior of structures was studied by considering three aspects:(1)effect of structural asymmetry on diaphragms deformation;(2)effect of diaphragm flexibility on demands of the lateral load-resisting elements;(3)optimum configuration of mass, stiffness, and strength centers to limit important engineering demand parameters in asymmetric structures with a flexible diaphragm. The results showed that the shear-dominant deformation of diaphragms is sensitive to both structure asymmetry specifications and the degree of diaphragm flexibility; therefore, it can be used for the qualitative classification of the seismic behavior of structures. Also, the center of strength in structures with flexible diaphragm is more important relative to the stiffness center and has a significant effect on engineering demands at all levels of diaphragm flexibility. Moreover, it was found that a suitable configuration of centers in torsionally stiff structures depends on the degree of diaphragm flexibility, in addition to the intensity of earthquakes (structure yield level) and selected engineering demand parameter.


2017 ◽  
Vol 9 (sup1) ◽  
pp. S53-S54
Author(s):  
M.J. Asmussen ◽  
J.R. Fletcher ◽  
S. Nigg ◽  
B. Nigg
Keyword(s):  

2012 ◽  
Vol 256-259 ◽  
pp. 2234-2239
Author(s):  
Marco Valente

This study investigates the influence of the in-plan structural layout on the seismic response of symmetric and asymmetric steel structures. A five-storey steel frame building was used as reference structure and two different structural systems were employed to represent torsional stiff and torsional flexible structures. Accurate numerical models of the different typologies of structures were developed and both nonlinear static and dynamic analyses under bi-directional ground motion were carried out. The influence of axial force-bending moment interaction in columns in the two main directions and second order effects were taken into account in the numerical analyses. The results of the numerical investigations on symmetric structures showed that the reduction of the number of moment resisting connections may lead to an increase of the structural damage. Asymmetric variants of the investigated structures were created by assuming different mass eccentricities in each of the two main directions and extensive parametric studies were performed. For the torsionally flexible building, the influence of ground motion intensity was very strong. A transition from torsionally flexible to torsionally stiff behaviour in the weaker direction of the initially torsionally flexible structure was observed for severe seismic actions. The change of the stiffness of the structure in one direction due to high levels of plastic deformations affected the structural response in the orthogonal direction. Torsional effects decreased in case of severe seismic excitations and high levels of plastic deformations. The reduction of torsional effects observed for low seismic actions on the stiff side of torsionally stiff buildings disappeared under strong seismic excitations.


2012 ◽  
Vol 23 (2) ◽  
pp. 146-160 ◽  
Author(s):  
S. A. Haj Seiyed Taghia ◽  
A. S. Moghadam ◽  
M. Ghafory Ashtiany

Sign in / Sign up

Export Citation Format

Share Document