stabilizing ligands
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 8)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Piyali Majumder ◽  
Chinmayee Shukla ◽  
Bhaskar Datta

G-quadruplex (G4) structures have emerged as singular therapeutic targets for cancer and neurodegeneration. Autophagy is a housekeeping cellular homeostatic mechanism and deregulation of autophagy is common in cancer and in neurodegenerative diseases. In this study, we identified the presence of 46 putative G4 sequences in the MTOR gene by use of QGRS mapper tool. We sought to connect these putative G4 sequences to a functional context by leveraging G4-targeting ligands. A G4-selective dimeric carbocyanine dye Bis-4,3 and the porphyrin TMPyP4 were used to affect the replication, transcription and translation of the MTOR gene. The ligand-induced induction of autophagic pathway via MTOR gene regulation was monitored upon treatment of HeLa and SHSY-5Y cells with G4-targeting ligands. The use of Bis-4,3 was compared with the known G4-stabilizing activity of TMPyP4. Our results show that treatment with G4-selective ligands downregulates mTOR activity and leads to the induction of excessive autophagy. This is first report on effect of G4-selective ligands on MTOR regulation and mTOR expression. mTOR being the key negative regulator of autophagy, the current work suggests potential of G4 stabilizing ligands towards induction of autophagy through the downregulation of mTOR.


2021 ◽  
Vol 516 ◽  
pp. 120170
Author(s):  
Sara Cerra ◽  
Laura Fontana ◽  
Enrico Rossi ◽  
Mauro Bassetti ◽  
Chiara Battocchio ◽  
...  

2020 ◽  
Vol 17 (7) ◽  
pp. 858-866
Author(s):  
Liyuan Zou ◽  
Hongbo Li ◽  
Mingbin Liu ◽  
Weihua Zhao ◽  
Suqin Wang

Background: Controlling the structure of proto-oncogene telomeres is very important in antitumor therapy. There are relationships between G-quadruplex DNA and the growth of tumor cell. Methods: In this study, spectroscopic, cyclic voltammetry and viscosity methods were employed to investigate the interaction between Zn-Arsenazo Ⅲ complex and G-quadruplex DNA by using 4S Green Plus Nucleic Acid Stain as a spectral probe in PBS buffer. The binding ratios were n Arsenazo Ⅲ : n Zn(Ⅱ) = 5:1 for Zn-Arsenazo Ⅲ complex and n Zn- Arsenazo Ⅲ : n G-quadruplex DNA = 8:1 for Zn-Arsenazo Ⅲ-G-quadruplex DNA. The bonding constants (Kθ 298.15K=4.44x105 L·mol-1, Kθ 308.15K= 1.00x105 L·mol-1, Kθ 318.15K= 1.04x106 L·mol-1) were obtained by double reciprocal method at different temperatures, Which was found that the interaction between Zn-Arsenazo Ⅲ complex and Gquadruplex DNA was driven by enthalpy. Furthermore, the research further confirmed that the interaction mode between Zn-Arsenazo Ⅲ complex and G-quadruplex DNA was a mixed binding which involved intercalation and non-intercalation interaction. Results and Conclusion: Together these findings also have corroborated the application of stabilizing ligands and intervening with their function for target G-quadruplexes in a cellular context.


2020 ◽  
Vol 48 (12) ◽  
pp. 6640-6653 ◽  
Author(s):  
Tapas Paul ◽  
Andrew F Voter ◽  
Rachel R Cueny ◽  
Momčilo Gavrilov ◽  
Taekjip Ha ◽  
...  

Abstract G-quadruplex (G4) DNA structures can form physical barriers within the genome that must be unwound to ensure cellular genomic integrity. Here, we report unanticipated roles for the Escherichia coli Rep helicase and RecA recombinase in tolerating toxicity induced by G4-stabilizing ligands in vivo. We demonstrate that Rep and Rep-X (an enhanced version of Rep) display G4 unwinding activities in vitro that are significantly higher than the closely related UvrD helicase. G4 unwinding mediated by Rep involves repetitive cycles of G4 unfolding and refolding fueled by ATP hydrolysis. Rep-X and Rep also dislodge G4-stabilizing ligands, in agreement with our in vivo G4-ligand sensitivity result. We further demonstrate that RecA filaments disrupt G4 structures and remove G4 ligands in vitro, consistent with its role in countering cellular toxicity of G4-stabilizing ligands. Together, our study reveals novel genome caretaking functions for Rep and RecA in resolving deleterious G4 structures.


The Analyst ◽  
2019 ◽  
Vol 144 (22) ◽  
pp. 6512-6516 ◽  
Author(s):  
Bruno Pagano ◽  
Nunzia Iaccarino ◽  
Anna Di Porzio ◽  
Antonio Randazzo ◽  
Jussara Amato

A proof of principle study on the use of nanoDSF as a screening tool for G-quadruplex targeting compounds.


2018 ◽  
Vol 1 (12) ◽  
pp. 7129-7138 ◽  
Author(s):  
Gillian Collins ◽  
Fionán Davitt ◽  
Colm O’Dwyer ◽  
Justin D. Holmes

Sign in / Sign up

Export Citation Format

Share Document