enhanced gravity separation
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4566
Author(s):  
Yushuai Xian ◽  
Youjun Tao ◽  
Fangyuan Ma ◽  
You Zhou

The recovery and reuse of waste printed circuit boards (PCBs) has attracted more and more attention from global researchers, as recycling of waste PCB metals is of great significance to the rational utilization of metal material resources. This study puts forward a clean and economical method in which enhanced gravity separation and wet high-gradient magnetic separation were combined to recover waste PCBs with heat treatment at a temperature of 240 °C. The heat treatment could improve the metal liberation effect of the PCBs, and the thermal behavior was measured by thermogravimetric analysis (TGA). The pyrolysis of the non-metal fraction (NMF) began around 300 °C, and the glass transition temperature of epoxy resin was 135.17 °C. The enhanced gravity separation technique was used for the separation of metals and NMF under the compound force field. The metals grade of the gravity concentrates fraction (GRF) was 82.97% under the optimal conditions, and the metals recovery reached 90.55%. A wet high-gradient magnetic separator was applied to classify the GRF into magnetic (MA) and non-magnetic (NMA) fractions, which could achieve iron and copper enrichment. After the three stages combined process, the copper and iron grades of the NMA and MA fractions were 70.17% and 73.42%, and the recovery reached 74.02% and 78.11%, respectively.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 701
Author(s):  
Zhengdong Han ◽  
Artem Golev ◽  
Mansour Edraki

Tungsten is recognized as a critical metal due to its unique properties, economic importance, and limited sources of supply. It has wide applications where hardness, high density, high wear, and high-temperature resistance are required, such as in mining, construction, energy generation, electronics, aerospace, and defense sectors. The two primary tungsten minerals, and the only minerals of economic importance, are wolframite and scheelite. Secondary tungsten minerals are rare and generated by hydrothermal or supergene alteration rather than by atmospheric weathering. There are no reported concerns for tungsten toxicity. However, tungsten tailings and other residues may represent severe risks to human health and the environment. Tungsten metal scrap is the only secondary source for this metal but reprocessing of tungsten tailings may also become important in the future. Enhanced gravity separation, wet high-intensity magnetic separation, and flotation have been reported to be successful in reprocessing tungsten tailings, while bioleaching can assist with removing some toxic elements. In 2020, the world’s tungsten mine production was estimated at 84 kt of tungsten (106 kt WO3), with known tungsten reserves of 3400 kt. In addition, old tungsten tailings deposits may have great potential for exploration. The incomplete statistics indicate about 96 kt of tungsten content in those deposits, with an average grade of 0.1% WO3 (versus typical grades of 0.3–1% in primary deposits). This paper aims to provide an overview of tungsten minerals, tungsten primary and secondary resources, and tungsten mine waste, including its environmental risks and potential for reprocessing.


Sign in / Sign up

Export Citation Format

Share Document