scholarly journals Mps1 promotes poleward chromosome movements in meiotic prometaphase

2021 ◽  
Vol 32 (10) ◽  
pp. 1020-1032
Author(s):  
Régis E. Meyer ◽  
Aaron R. Tipton ◽  
Rebecca LaVictoire ◽  
Gary J. Gorbsky ◽  
Dean S. Dawson

Mps1 is a kinase that regulates several steps in mitosis and meiosis. Mps1 is essential for the spindle checkpoint and helps stabilize attachment of kinetochores to microtubules. Here we show that following microtubule attachment, Mps1 promotes microtubule depolymerization to trigger migration of the chromosome toward the spindle pole.

2020 ◽  
Author(s):  
Régis E Meyer ◽  
Aaron R Tipton ◽  
Gary J Gorbsky ◽  
Dean S Dawson

ABSTRACTIn prophase of meiosis I, homologous partner chromosomes pair and become connected by crossovers. Chiasmata, the connections formed between the partners enable the chromosome pair, called a bivalent, to attach as a single unit to the spindle. When the meiosis I spindle forms in prometaphase, most bivalents are associated with a single spindle pole and go through a series of oscillations on the spindle, attaching to and detaching from microtubules until the partners of the bivalent are bi-oriented, that is, attached to microtubules from opposite sides of the spindle, and prepared to be segregated at anaphase I. The conserved, kinetochore-associated kinase, Mps1, is essential for the bivalents to be pulled by microtubules across the spindle in prometaphase. Here we show that MPS1 is not required for kinetochores to attach microtubules but instead is necessary to trigger the migration of microtubule-attached kinetochores towards the poles. Our data support the model that Mps1 triggers depolymerization of microtubule ends once they attach to kinetochores in prometaphase. Thus, Mps1 acts at the kinetochore to co-ordinate the successful attachment of a microtubule and the triggering of microtubule depolymerization to move the chromosome.


1981 ◽  
Vol 88 (3) ◽  
pp. 618-629 ◽  
Author(s):  
W Z Cande ◽  
K McDonald ◽  
R L Meeusen

After lysis in a Brij 58-polyethylene glycol medium, PtK1 cells are permeable to small molecules, such as erythrosin B, and to proteins, such as rhodamine-labeled FAB, myosin subfragment-1, and tubulin. Holes are present in the plasma membrane, and the mitochondria are swollen and distorted, but other membrane-bounded organelles of the lysed cell model are not noticeably altered. After lysis, the mitotic apparatus is functional; chromosomes move poleward and the spindle elongates. Cells lysed while in cytokinesis will continue to divide for several minutes. Addition of crude tubulin extracts, MAP-free tubulin, or taxol to the lysis medium retards anaphase chromosome movements but does not affect cleavage. On the other hand, N-ethylmaleimide-modified myosin subfragment-1, phalloidin, and cytochalasin B inhibit cleavage but have no effect on anaphase chromosome movements under identical lysis conditions. These results suggest that actomyosin plays no functional role in anaphase chromosome movement in mammalian tissue culture cells and that microtubule depolymerization is a rate-limiting step for chromosome-to-pole movements.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 912 ◽  
Author(s):  
Elisa Balzano ◽  
Simona Giunta

Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the “selfish” pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability.


2019 ◽  
Vol 218 (4) ◽  
pp. 1108-1117 ◽  
Author(s):  
Tatiana Alfonso-Pérez ◽  
Daniel Hayward ◽  
James Holder ◽  
Ulrike Gruneberg ◽  
Francis A. Barr

Cyclin B–dependent kinase (CDK1-CCNB1) promotes entry into mitosis. Additionally, it inhibits mitotic exit by activating the spindle checkpoint. This latter role is mediated through phosphorylation of the checkpoint kinase MPS1 and other spindle checkpoint proteins. We find that CDK1-CCNB1 localizes to unattached kinetochores and like MPS1 is lost from these structures upon microtubule attachment. This suggests that CDK1-CCNB1 is an integral component and not only an upstream regulator of the spindle checkpoint pathway. Complementary proteomic and cell biological analysis demonstrate that the spindle checkpoint protein MAD1 is one of the major components of CCNB1 complexes, and that CCNB1 is recruited to unattached kinetochores in an MPS1-dependent fashion through interaction with the first 100 amino acids of MAD1. This MPS1 and MAD1-dependent pool of CDK1-CCNB1 creates a positive feedback loop necessary for timely recruitment of MPS1 to kinetochores during mitotic entry and for sustained spindle checkpoint arrest. CDK1-CCNB1 is therefore an integral component of the spindle checkpoint, ensuring the fidelity of mitosis.


1997 ◽  
Vol 137 (2) ◽  
pp. 417-431 ◽  
Author(s):  
William Saunders ◽  
David Hornack ◽  
Valerie Lengyel ◽  
Changchun Deng

The Saccharomyces cerevisiae kinesin-related motor Kar3p, though known to be required for karyogamy, plays a poorly defined, nonessential role during vegetative growth. We have found evidence suggesting that Kar3p functions to limit the number and length of cytoplasmic microtubules in a cell cycle–specific manner. Deletion of KAR3 leads to a dramatic increase in cytoplasmic microtubules, a phenotype which is most pronounced from START through the onset of anaphase but less so during late anaphase in synchronized cultures. We have immunolocalized HA-tagged Kar3p to the spindle pole body region, and fittingly, Kar3p was not detected by late anaphase. A microtubule depolymerizing activity may be the major vegetative role for Kar3p. Addition of the microtubule polymerization inhibitors nocodazol or benomyl to the medium or deletion of the nonessential α-tubulin TUB3 gene can mostly correct the abnormal microtubule arrays and other growth defects of kar3 mutants, suggesting that these phenotypes result from excessive microtubule polymerization. Microtubule depolymerization may also be the mechanism by which Kar3p acts in opposition to the anaphase B motors Cin8p and Kip1p. A preanaphase spindle collapse phenotype of cin8 kip1 mutants, previously shown to involve Kar3p, is markedly delayed when microtubule depolymerization is inhibited by the tub2-150 mutation. These results suggest that the Kar3p motor may act to regulate the length and number of microtubules in the preanaphase spindle.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4723-4723
Author(s):  
Guo-Qiang Chen ◽  
Wei Dai ◽  
Han-Zhang Xu ◽  
Dao Li

Abstract Microtubule poisons such as taxol represent a potent and effective class of anticancer compounds. In the past decades, great efforts have been directed to identify novel natural products with a mode of action similar to taxol but with a minimal side effect. In this study, we report the functional characterization of a new ent-kaurene diterpenoid termed pharicin A, which was originally isolated from Isodon pharicus leaves, a perennial shrub frequently used in Chinese folk medicine for tumor treatment. Pharicin A induces mitotic arrest in Jurkat, Raji and HeLa based on their morphology, DNA content, histone H3 serine-10 phosphorylation, and mitotic marker protein analyses. Pharicin A stabilizes the formation of mitotic spindles, which is coupled with a rapid accumulation of Cdc20 as well as an increased phosphorylation of Cdc27 and BubR1. Pharicin A treatment also results in an enhanced interaction between Cdc20 and spindle checkpoint components including Mad2 and BubR1. Moreover, pharicin A-induced mitotic arrest in HeLa cells is tightly associated with the presence of lagging/missegregated chromosomes at spindle pole regions, which are highly enriched in BubR1, CENP-E and Sgo1. Although pharicin A stabilizes microtubules both in vitro and in vivo, it induces mitotic arrest in taxol-resistant Jurkat cells. Combined, our study strongly suggests that pharicin A represents a novel class of small molecule compounds capable of perturbing microtubule dynamics and the spindle checkpoint in tumor cells, which merits further preclinical and clinical investigations for cancer drug development.


1990 ◽  
Vol 110 (1) ◽  
pp. 81-95 ◽  
Author(s):  
C L Rieder ◽  
S P Alexander

During mitosis in cultured newt pneumocytes, one or more chromosomes may become positioned well removed (greater than 50 microns) from the polar regions during early prometaphase. As a result, these chromosomes are delayed for up to 5 h in forming an attachment to the spindle. The spatial separation of these chromosomes from the polar microtubule-nucleating centers provides a unique opportunity to study the initial stages of kinetochore fiber formation in living cells. Time-lapse Nomarski-differential interference contrast videomicroscopic observations reveal that late-attaching chromosomes always move, upon attachment, into a single polar region (usually the one closest to the chromosome). During this attachment, the kinetochore region of the chromosome undergoes a variable number of transient poleward tugs that are followed, shortly thereafter, by rapid movement of the chromosome towards the pole. Anti-tubulin immunofluorescence and serial section EM reveal that the kinetochores and kinetochore regions of nonattached chromosomes lack associated microtubules. By contrast, these methods reveal that the attachment and subsequent poleward movement of a chromosome correlates with the association of a single long microtubule with one of the kinetochores of the chromosome. This microtubule traverses the entire distance between the spindle pole and the kinetochore and often extends well past the kinetochore. From these results, we conclude that the initial attachment of a chromosome to the newt pneumocyte spindle results from an interaction between a single polar-nucleated microtubule and one of the kinetochores on the chromosome. Once this association is established, the kinetochore is rapidly transported poleward along the surface of the microtubule by a mechanism that is not dependent on microtubule depolymerization. Our results further demonstrate that the motors for prometaphase chromosome movement must be either on the surface of the kinetochore (i.e., within the corona but not the plate), distributed along the surface of the kinetochore microtubules, or both.


2002 ◽  
Vol 13 (12) ◽  
pp. 4308-4316 ◽  
Author(s):  
Jennifer S. Tirnauer ◽  
Julie C. Canman ◽  
E.D. Salmon ◽  
Timothy J. Mitchison

Microtubule polymerization dynamics at kinetochores is coupled to chromosome movements, but its regulation there is poorly understood. The plus end tracking protein EB1 is required both for regulating microtubule dynamics and for maintaining a euploid genome. To address the role of EB1 in aneuploidy, we visualized its targeting in mitotic PtK1 cells. Fluorescent EB1, which localized to polymerizing ends of astral and spindle microtubules, was used to track their polymerization. EB1 also associated with a subset of attached kinetochores in late prometaphase and metaphase, and rarely in anaphase. Localization occurred in a narrow crescent, concave toward the centromere, consistent with targeting to the microtubule plus end–kinetochore interface. EB1 did not localize to kinetochores lacking attached kinetochore microtubules in prophase or early prometaphase, or upon nocodazole treatment. By time lapse, EB1 specifically targeted to kinetochores moving antipoleward, coupled to microtubule plus end polymerization, and not during plus end depolymerization. It localized independently of spindle bipolarity, the spindle checkpoint, and dynein/dynactin function. EB1 is the first protein whose targeting reflects kinetochore directionality, unlike other plus end tracking proteins that show enhanced kinetochore binding in the absence of microtubules. Our results suggest EB1 may modulate kinetochore microtubule polymerization and/or attachment.


2009 ◽  
Vol 20 (22) ◽  
pp. 4696-4705 ◽  
Author(s):  
Uttama Rath ◽  
Gregory C. Rogers ◽  
Dongyan Tan ◽  
Maria Ana Gomez-Ferreria ◽  
Daniel W. Buster ◽  
...  

Chromosome movements are linked to the active depolymerization of spindle microtubule (MT) ends. Here we identify the kinesin-13 family member, KLP59D, as a novel and uniquely important regulator of spindle MT dynamics and chromosome motility in Drosophila somatic cells. During prometaphase and metaphase, depletion of KLP59D, which targets to centrosomes and outer kinetochores, suppresses the depolymerization of spindle pole–associated MT minus ends, thereby inhibiting poleward tubulin Flux. Subsequently, during anaphase, loss of KLP59D strongly attenuates chromatid-to-pole motion by suppressing the depolymerization of both minus and plus ends of kinetochore-associated MTs. The mechanism of KLP59D's impact on spindle MT plus and minus ends appears to differ. Our data support a model in which KLP59D directly depolymerizes kinetochore-associated plus ends during anaphase, but influences minus ends indirectly by localizing the pole-associated MT depolymerase KLP10A. Finally, electron microscopy indicates that, unlike the other Drosophila kinesin-13s, KLP59D is largely incapable of oligomerizing into MT-associated rings in vitro, suggesting that such structures are not a requisite feature of kinetochore-based MT disassembly and chromosome movements.


1980 ◽  
Vol 86 (2) ◽  
pp. 402-416 ◽  
Author(s):  
D H Tippit ◽  
J D Pickett-Heaps ◽  
R Leslie

Prometaphase in two large species of diatoms is examined, using the following techniques: (a) time-lapse cinematography of chromosome movements in vivo; (b) electron microscopy of corresponding stages: (c) reconstruction of the microtubules (MTs) in the kinetochore fiber of chromosomes attached to the spindle. In vivo, the chromosomes independently commence oscillations back and forth to one pole. The kinetochore is usually at the leading edge of such chromosome movements; a variable time later both kinetochores undergo such oscillations but toward opposite poles and soon stretch poleward to establish stable bipolar attachment. Electron microscopy of early prometaphase shows that the kinetochores usually laterally associate with MTs that have one end attached to the spindle pole. At late prometaphase, most chromosomes are fully attached to the spindle, but the kinetochores on unattached chromosomes are bare of MTs. Reconstruction of the kinetochore fiber demonstrates that most of its MTs (96%) extend past the kinetochore and are thus apparently not nucleated there. At least one MT terminates at each kinetochore analyzed. Our interpretation is that the conventional view of kinetochore function cannot apply to diatoms. The kinetochore fiber in diatoms appears to be primarily composed of MTs from the poles, in contrast to the conventional view that many MTs of the kinetochore fiber are nucleated by the kinetochore. Similarly, chromosomes appear to initially orient their kinetochores to opposite poles by moving along MTs attached to the poles, instead of orientation effected by kinetochore MTs laterally associating with other MTs in the spindle. The function of the kinetochore in diatoms and other cell types is discussed.


Sign in / Sign up

Export Citation Format

Share Document