Characterizing ionospheric disturbances caused by the North Korean rocket (Hwasung-15) using a four-dimensional variational (4D-VAR) data-assimilation model

Author(s):  
Gwang Su Kim ◽  
Yong Ha Kim ◽  
Byung-Kyu Choi ◽  
Junseok Hong ◽  
Nicholas Ssessanga
2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohammad Heidarzadeh ◽  
Yuchen Wang ◽  
Kenji Satake ◽  
Iyan E. Mulia

AbstractWestern Mediterranean Basin (WMB) is among tsunamigenic zones with numerous historical records of tsunami damage and deaths. Most recently, a moderate tsunami on 21 May 2003 offshore Algeria, North Africa, was a fresh call for strengthening tsunami warning capabilities in this enclosed water basin. Here, we propose to deploy offshore bottom pressure gauges (OBPGs) and to adopt the framework of a tsunami data assimilation (TDA) approach for providing timely tsunami forecasts. We demonstrate the potential enhancement of the tsunami warning system through the case study of the 2003 Algeria tsunami. Four scenarios of OBPG arrangements involving 10, 5, 3 and 2 gauges are considered. The offshore gauges are located at distances of 120–300 km from the North African coast. The warning lead times are 20, 30, 48 and 55 min for four points of interest considered in this study: Ibiza, Palma, Sant Antoni and Barcelona, respectively. The forecast accuracies are in the range of 69–85% for the four OBPG scenarios revealing acceptable accuracies for tsunami warnings. We conclude that installation of OBPGs in the WMB can be helpful for providing successful and timely tsunami forecasts. We note that the OBPG scenarios proposed in this study are applicable only for the case of the 2003 Algeria tsunami. Further studies including sensitivity analyses (e.g., number of OBPG stations; earthquake magnitude, strike, epicenter) are required in order to determine OBPG arrangements that could be useful for various earthquake scenarios in the WMB.


Radio Science ◽  
2009 ◽  
Vol 44 (1) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ludger Scherliess ◽  
Donald C. Thompson ◽  
Robert W. Schunk

2016 ◽  
Vol 66 (8) ◽  
pp. 955-971 ◽  
Author(s):  
Stéphanie Ponsar ◽  
Patrick Luyten ◽  
Valérie Dulière

2020 ◽  
Author(s):  
Temitope Seun Oluwadare ◽  
Norbert Jakowski ◽  
Cesar E. Valladares ◽  
Andrew Oke-Ovie Akala ◽  
Oladipo E. Abe ◽  
...  

Abstract We present for the first time the climatology of medium-scale traveling ionospheric disturbances (MSTIDs) by using Global Positioning System (GPS) receiver networks on geomagnetically quiet days (Kp ≤ 3) over the North African region during 2008-2016. The MSTIDs appear frequently as oscillating waves or wave-like structures in electron density induced by the passage of Atmospheric Gravity Waves (AGW) propagating through the neutral atmosphere and consequently, causing fluctuation in the ionospheric Total Electron Content (TEC). The TEC perturbations (dTEC) data are derived from dual frequency GPS-measurements. We have statistically analyzed the MSTIDs characteristics, occurrence rate, seasonal behavior as well as the interannual dependence. The results show a local and seasonal dependence of nighttime and daytime MSTIDs. The propagation direction is predominantly towards the South (equatorward), MSTIDs event period is (12 ≤ period ≤ 53 mins), and dominant amplitude (0.08 ≤ amp ≤ ~1.5 TECU), with a propagation velocity higher at daytime than nighttime. The amplitudes of the MSTIDs increase with solar activity. The local MSTIDs Spatio-temporal heat reveals variability in disturbance occurrence time, but seems to be dominant within the hours of (Northwest: 1200–1600 LT) and (Northeast: 1000–1400 LT) in December solstice during daytime, and around (NW: 2100–0200 LT) and (NE: 1900–0200 LT) in June solstice, but get extended to March equinox during solar maximum (2014) during the nighttime. The time series of MSTIDs regional distribution map is also generated. Atmospheric gravity waves (AGW) seems to be responsible for the daytime MSTIDs occurrence.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Min Xu ◽  
Shichang Kang ◽  
Jiazhen Li

The Gravity Recovery and Climate Experiment (GRACE) satellite mission provides measurements of Earth’s static and time-variable gravity fields with monthly resolution. In this study, changes of water storage in northwestern China were determined by GRACE monthly gravity field data obtained from 2003 to 2010. Comparisons of water storage change (WSC) simulated by a four-dimensional assimilation model (Noah) and observed by GRACE revealed similar patterns of change and a correlation coefficient of 0.71(P<0.05). Trend analysis indicated significant changes in the spatiotemporal variation of WSC in northwestern China during the 8-year study period, which were stronger in the east than in the west and more pronounced in the south than in the north. The most pronounced increase in water storage occurred in Gansu and Qinghai provinces, but, overall, water storage increased by 0.61 mm/a over northwestern China during the study period. Clear seasonal variations of WSC and precipitation were found, because glacial meltwater and precipitation are the main sources of water in the hydrosphere; meanwhile, the distributions of glaciers and permafrost also affect the spatial distribution of WSC.


2022 ◽  
Vol 34 (1) ◽  
pp. 015101
Author(s):  
Sen Li ◽  
Chuangxin He ◽  
Yingzheng Liu

Sign in / Sign up

Export Citation Format

Share Document