scholarly journals Orogenic lithosphere and slabs in the greater Alpine area – interpretations based on teleseismic P-wave tomography

Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2633-2669 ◽  
Author(s):  
Mark R. Handy ◽  
Stefan M. Schmid ◽  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

Abstract. Based on recent results of AlpArray, we propose a new model of Alpine collision that involves subduction and detachment of thick (∼ 180 km) European lithosphere. Our approach combines teleseismic P-wave tomography and existing local earthquake tomography (LET), allowing us to image the Alpine slabs and their connections with the overlying orogenic lithosphere at an unprecedented resolution. The images call into question the conventional notion that downward-moving lithosphere and slabs comprise only seismically fast lithosphere. We propose that the European lithosphere is heterogeneous, locally containing layered positive and negative Vp anomalies of up to 5 %–6 %. We attribute this layered heterogeneity to seismic anisotropy and/or compositional differences inherited from the Variscan and pre-Variscan orogenic cycles rather than to thermal anomalies. The lithosphere–asthenosphere boundary (LAB) of the European Plate therefore lies below the conventionally defined seismological LAB. In contrast, the lithosphere of the Adriatic Plate is thinner and has a lower boundary approximately at the base of strong positive Vp anomalies at 100–120 km. Horizontal and vertical tomographic slices reveal that beneath the central and western Alps, the European slab dips steeply to the south and southeast and is only locally still attached to the Alpine lithosphere. However, in the eastern Alps and Carpathians, this slab is completely detached from the orogenic crust and dips steeply to the north to northeast. This along-strike change in attachment coincides with an abrupt decrease in Moho depth below the Tauern Window, the Moho being underlain by a pronounced negative Vp anomaly that reaches eastward into the Pannonian Basin area. This negative Vp anomaly is interpreted as representing hot upwelling asthenosphere that heated the overlying crust, allowing it to accommodate Neogene orogen-parallel lateral extrusion and thinning of the ALCAPA tectonic unit (upper plate crustal edifice of Alps and Carpathians) to the east. A European origin of the northward-dipping, detached slab segment beneath the eastern Alps is likely since its down-dip length matches estimated Tertiary shortening in the eastern Alps accommodated by originally south-dipping subduction of European lithosphere. A slab anomaly beneath the Dinarides is of Adriatic origin and dips to the northeast. There is no evidence that this slab dips beneath the Alps. The slab anomaly beneath the Northern Apennines, also of Adriatic origin, hangs subvertically and is detached from the Apenninic orogenic crust and foreland. Except for its northernmost segment where it locally overlies the southern end of the European slab of the Alps, this slab is clearly separated from the latter by a broad zone of low Vp velocities located south of the Alpine slab beneath the Po Basin. Considered as a whole, the slabs of the Alpine chain are interpreted as highly attenuated, largely detached sheets of continental margin and Alpine Tethyan oceanic lithosphere that locally reach down to a slab graveyard in the mantle transition zone (MTZ).

2021 ◽  
Author(s):  
Mark Handy ◽  
Stefan Schmid ◽  
Marcel Paffrath ◽  
Wolfgang Friederich ◽  

Abstract. Based on recent results of AlpArray, we propose a new model of Alpine collision that involves subduction and detachment of thick (180–200 km) European tectosphere. Our approach combines teleseismic P-wave tomography and existing Local Earthquake Tomography (LET) allowing us to image the Alpine slabs and their connections with the overlying orogenic crust at an unprecedented resolution. The images call into question the conventional notion that slabs comprise only seismically fast lithosphere and suggest that the mantle of the downgoing European Plate is heterogeneous, containing both positive and negative Vp anomalies of up to 5–6%. We interpret these as compositional rather than thermal anomalies, inherited from the Variscan and pre-Variscan orogenic cycles. They make up a kinematic entity referred to as tectosphere, which presently dips beneath the Alpine orogenic front. In contrast to the European Plate, the tectosphere of the Adriatic Plate is thinner (100–120 km) and has a lower boundary approximately at the interface between positive and negative Vp anomalies. Horizontal and vertical tomographic slices reveal that beneath the Central and Western Alps, the downgoing European tectospheric slab dips steeply to the S and SE and is only locally still attached to the Alpine crust. However, in the Eastern Alps and Carpathians, the European slab is completely detached from the orogenic crust and dips steeply to the N-NE. This along-strike change in attachment coincides with an abrupt decrease in Moho depth below the Tauern Window, the Moho being underlain by a pronounced negative Vp anomaly that reaches eastward into the Pannonian Basin area. This negative Vp anomaly is interpreted to represent hot upwelling asthenosphere that was instrumental in accommodating Neogene orogen-parallel lateral extrusion of the ALCAPA tectonic unit (upper plate crustal edifice of Alps and Carpathians) to the east. A European origin of the northward-dipping, detached slab segment beneath the Eastern Alps is likely since its imaged down-dip length (300–500 km) matches estimated Tertiary shortening in the Eastern Alps accommodated by south-dipping subduction of European tectosphere. A slab anomaly beneath the Dinarides is of Adriatic origin and dips to the northeast. There is no evidence that this slab dips beneath the Alps. The slab anomaly beneath the northern Apennines, also of Adriatic origin, hangs subvertically and is detached from the Apenninic orogenic crust and foreland. Except for its northernmost segment where it locally overlies the southern end of the European slab of the Alps, this slab is clearly separated from the latter by a broad zone of low Vp velocities located south of the Alpine slab beneath the Po Basin. Considered as a whole, the slabs of the Alpine chain are interpreted as attenuated, largely detached sheets of continental margin and Alpine Tethyan lithosphere that locally reach down to a slab graveyard in the Mantle Transition Zone (MTZ).


2021 ◽  
Author(s):  
Mark R. Handy ◽  
Stefan M. Schmid ◽  
Marcel Paffrath ◽  
Wolfgang Friederich

<p>The prevailing paradigm of mountain building in the Alps entails subduction of European continental lithosphere some 100km thick beneath the Adriatic plate. Based on recent results of AlpArray, we propose a new model that involves subduction and wholesale detachment of locally much thicker (200-240 km) European lithosphere. Our approach combines teleseismic P-wave tomography and existing Local Earthquake Tomography (LET) to image the Alpine slabs and their connections with the overlying orogenic crust at unprecedented resolution. The images call into question the simple notion that slabs comprise only seismically fast lithosphere and suggest that the mantle of the downgoing European plate is compositionally heterogeneous, containing both positive and negative seismic anomalies of up to 5%. We interpret these as compositional rather than thermal anomalies, inherited from the Paleozoic Variscan orogenic cycle and presently dipping beneath the Alpine orogenic front. In contrast to the European Plate, the lithosphere of the Adriatic Plate is thinner (100-120 km) and has a more poorly defined lower boundary approximately at the interface between positive and negative Vp anomalies.</p><p> </p><p>Horizontal and vertical tomographic slices reveal that beneath the Central and Western Alps, the downgoing European Plate dips steeply to the S and SE and is locally detached from the Alpine crust. However, in the Eastern Alps and Carpathians east of the central Tauern Window, the Alpine slab anomaly occupies the 150-400 km depth interval and dips steeply to the N-NE, having completely detached from the  Alpine orogenic crust. This along-strike change coincides with an abrupt eastward decrease in Moho depth (Kind et al., this session), the Moho being underlain by a pronounced negative Vp anomaly reaching eastward into the Pannonian Basin area. This negative Vp anomaly is interpreted to represent hot upwelling asthenosphere that was instrumental in accommodating Neogene orogen-parallel lateral extrusion of the ALCAPA tectonic unit (upper plate crustal edifice of Alps and Carpathians) to the E.  An Adriatic origin of the northward-dipping, detached slab segment beneath the Eastern Alps is unlikely since its imaged down-dip length (200-300 km) matches estimated Tertiary shortening in the Eastern Alps accommodated by south-dipping subduction of European lithosphere, whereas shortening in the south-vergent eastern Southern Alps is only ≤ 70 km.</p><p> </p><p>A slab anomaly beneath the northernmost Dinarides, laterally adjoining the Eastern Alps, is missing. The slab anomaly beneath the northern Apennines, of Adriatic origin und dipping beneath the Tyrrhenian backarc, hangs subvertically and appears to be almost detached from the Apenninic orogenic crust. Except for its westernmost segment where it meets the Alpine slab, this slab is clearly separated from the latter by a broad extent of upwelling asthenosphere located south of the Alpine slabs beneath the Po Plain, i.e., just south of the Alpine subduction zone. Considered as a whole, the slabs beneath the Alpine chain are interpreted as attenuated, largely detached sheets of continental margin and Alpine Tethyan lithosphere that locally reach down to a slab graveyard in the Mantle Transition Zone (MTZ).</p>


2020 ◽  
Author(s):  
Kurt Stüwe ◽  
Gerit Gradwohl ◽  
Thorsten Bertosch ◽  
Konstantin Hohmann ◽  
Jörg Robl ◽  
...  

<p>The eastern end of the Alps features a series of low relief surfaces at elevations up to 2500 m. These surfaces have long been known to reflect uplifted planation surfaces that have not yet been dissected by fluvial processes and thus preserve a strong geomorphic disequilibrium. While their age would present a good handle on the age of surface uplift in the Eastern Alps, these surfaces are barely dated and their age is only indirectly inferred to reflect the Miocene and Pliocene uplift history. Recent geomorphological cosmogenic nucleide-based studies have shown that these surfaces may record up to 1000 m of surface uplift in the last 5 Ma. Such a distinct uplift event in the recent past is surprising and needs to be interpreted. Interestingly, this time frame appears not to be accompanied by crustal shortening and the standard hypothesis about the inversion of the Pannonian Basin as the underlying cause needs to be questioned. In order to get a better handle on the nature of this young uplift event and its overriding driver it is crucial to understand its spatial extent. However, much of the Eastern Alps was glaciated in the Pleistocene and currently several studies suggest that elevated low-relief landscapes were shaped by the glacial buzz-saw, instead of interpreting them in terms of fluvial prematurity of recently uplifted planation surfaces. The models of glacial erosion versus fluvial prematurity as the formation agent of the low-relief surfaces can be discerned if it can be shown that the surfaces formed prior to the Pleistocene. Here we report of a currently operating research project in which we employ cosmogenic nucleide burial dating on a substantial part of the entire Eastern Alps to derive the age of these surfaces. We use the burial age of siliceous sediments in caves formed at the phreatic-vadose transition as a proxy. Correlation of cave levels with low-relief surfaces and their mapping in the field is an integral part of the project.</p><p> </p>


2020 ◽  
Author(s):  
Dániel Kalmár ◽  
György Hetényi ◽  
István Bondár ◽  

<p>We perform P-to-S receiver function analysis to determine a detailed map of the crust-mantle boundary in the Eastern Alps–Pannonian basin–Carpathian mountains junction. We use data from the AlpArray Seismic Network, the Carpathian Basin Project and the South Carpathian Project temporary seismic networks, the permanent stations of the Hungarian National Seismological network, stations of a private network in Hungary as well as selected permanent seismological stations in neighbouring countries for the time period between 2004.01.01. and 2019.03.31. Altogether 221 seismological stations are used in the analysis. Owing to the dense station coverage we can achieve so far unprecedented resolution, thus extending our previous work on the region. We applied three-fold quality control, the first two on the observed waveforms and the third on the calculated radial receiver functions, calculated by the iterative time-domain deconvolution approach. The Moho depth was determined by two independent approaches, the common conversion point (CCP) migration with a local velocity model and the H-K grid search. We show cross-sections beneath the entire investigated area, and concentrate on major structural elements such as the AlCaPa and Tisza-Dacia blocks, the Mid-Hungarian Fault Zone and the Balaton Line. Finally, we present the Moho map obtained by the H-K grid search method and pre-stack CCP migration and interpolation over the entire study area, and compare results of two independent methods to prior knowledge.</p>


2021 ◽  
Author(s):  
Jaroslava Plomerová ◽  
Helena Žlebčíková ◽  
György Hetényi ◽  
Luděk Vecsey ◽  
Vladislav Babuška ◽  
...  

Abstract. We present high-resolution tomographic images of the upper mantle beneath the E. Alps and the adjacent Bohemian Massif (BM) in the North based on data from the AlpArray-EASI and AlpArray Seismic Networks. The tomography locates the Alpine high-velocity perturbations between the Periadriatic Lineament and the Northern Alpine Front. The northward-dipping lithosphere keel is imaged down to ~200–250 km depth, without signs of delamination, and we associate it with the Adriatic plate subduction. Detached high-velocity heterogeneity, sub-parallel to and distinct from the E. Alps heterogeneity is imaged at ~100–200 km depths beneath the southern part of the BM. We associate this heterogeneity with the western end of a SW-NE striking heterogeneity beneath the south-eastern part of the BM, imaged in models of larger extent. The strike, parallel with the Moldanubian/Brunovistulian mantle-lithosphere boundary in the BM and with the westernmost part of the Carpathian front, lead us to consider potential scenarios relating the heterogeneity to (1) a remnant of the delaminated European plate, (2) a piece of continental-and-oceanic lithosphere mixture related to the building of the BM, particularly to the closure of the old Rheic ocean during the MD/BV collision or (3) a lithospheric fragment going through to the NW between the E. Alps and W. Carpathians fronts in a preceding subduction phase. The study is dedicated to our outstanding and respected colleague Vladislav Babuška, who coined innovative views on the European lithosphere and died on March 30, 2021.


2021 ◽  
Author(s):  
John Cornthwaite ◽  
Fenglin Niu ◽  
Alan Levander ◽  
Michael Schmitz ◽  
Germán Prieto ◽  
...  

<p>     The southernmost edge of the Caribbean (CAR) plate, a buoyant large igneous province, subducts shallowly beneath northwestern South America (NWSA) at a trench that lies northwest of Colombia. Recent finite frequency P-wave tomography results show a segmented CAR subducting at a shallow angle under the Santa Marta Massif to the Serrania de Perijá (SdP) before steepening while a detached segment beneath the Mérida Andes (MA) descends into the mantle transition zone. The dynamics of shallow subduction are poorly understood. Plate coupling between the flat subducting CAR and the overriding NWSA is proposed to have driven the uplift of the MA. In this study we analyze SKS shear wave splitting to investigate the seismic anisotropy beneath the slab segments to relate their geometry to mantle dynamics. We also use local S splitting to investigate the seismic anisotropy between the slab segments and the overriding plate. The data were recorded by a 65-element portable broadband seismograph network deployed in NWSA and 40 broadband stations of the Venezuelan and Colombian national seismograph networks.</p><p>     SKS fast polarization axes are measured generally trench-perpendicular (TP) west of the SdP but transition to trench-parallel (TL) at the SdP where the slab was imaged steepening into the mantle, consistent with previous studies. West of the MA the fast axis is again TP but transitions to TL under the MA. This second transition from TP to TL is likely due to mantle material being deflected around a detached slab under the MA. Local S fast polarization axes are dominantly TP throughout the study area west of the Santa Marta Massif and are consistent with slab-entrained flow. Under the Santa Marta Massif the fast axis is TL for reasons we do not yet understand.</p>


2021 ◽  
Author(s):  
Jaroslava Plomerová ◽  
Helena Žlebčíková ◽  
György Hetényi ◽  
Luděk Vecsey ◽  
Vladislav Babuška ◽  
...  

2021 ◽  
Author(s):  
Rainer Kind ◽  
Stefan Schmid ◽  
Xiaohui Yuan ◽  
Ben Heit

<p>In the frame of the AlpArray project we analyse teleseismic data from permanent and temporary stations of the greater Alpine region to study seismic discontinuities in the entire lithosphere. We use broadband S-to-P converted signals from below the seismic stations. In order to avoid sidelobes, no deconvolution or filtering is applied and S arrival times are used as reference. We show a number of north-south and east-west profiles through the greater Alpine area. The Moho signals are always seen very clearly, and also negative velocity gradients below the Moho are visible in a number of profiles. The subducting European Moho is visible in the Eastern Alps west of 13.5°E (the eastern edge of the Tauern Window) and reaches there about 60km depth at 47°N. East of about 13.5°E, the image of the Moho changes completely. No south dipping European Moho is found anymore, instead the Moho is shallowing towards the Pannonian Basin. This suggests severe post-nappe emplacement modifications east of about 13.5°E, most probably associated with delamination of the mantle lithosphere within the formerly subducting European slab, i.e. mantle that separated from the crustal parts of the Alpine-West Carpathian orogen during the last ca. 20 Ma when the Pannonian basin formed and the ALCAPA block underwent its E-directed lateral extrusion.</p><p>Ratschbacher, L., Frisch, W., Linzer, H.-G. and Merle, O. (1991) Lateral extrusion in the Eastern Alps, Part 2: Structural analysis. Tectonics, vol.10, No.2, 257-271.</p>


1966 ◽  
Vol 56 (5) ◽  
pp. 1009-1044 ◽  
Author(s):  
L. Knopoff ◽  
S. Mueller ◽  
W. L. Pilant

Abstract The phase velocity method has been applied to the problem of the determination of the crust and upper mantle under the western Alpine crest and in the Alpine foreland to the north. An extensive data processing package has been designed so that Fourier analysis is applied to the determination of phase velocities, rather than the more usual peak-and-trough method. Effects of contamination by multipath interference, manifested in beats, can be minimized. Advantage is made of apparent azimuthal variations in phase velocity to yield a further refinement in the method whereby the tripartite results are assigned to discrete lines in the network rather than to the area swept out by the wave front. The results show that a well-developed low-velocity channel for S is found throughout the region with a velocity of S in the channel of 4.2 km/sec. The top of the channel is at about 80 km depth. A new analysis of P-wave data shows a likely horizon for reflections at 220 km; this is taken to be the depth of the lower boundary to the channel. The mean P-wave velocity in the lower crust is at least as high as 6.7 km/sec. The crustal and upper mantle structure vary significantly over relatively short distances. The Mohorovičić discontinuity is deepest under the crest of the Alps and shoals to the north and west; a well developed root has been found.


2021 ◽  
Author(s):  
Wenpei Miao ◽  
John Cornthwaite ◽  
Alan Levander ◽  
Fenglin Niu ◽  
Michael Schmitz ◽  
...  

<p>The Caribbean plate (CAR) collided with and initiated subduction beneath northwestern South America (SA) at about 60-55 Ma. Since the onset of subduction, it has formed the Lara nappes and subsequently the Laramide-style uplifts of the Merida Andes, Sierra de la Perija and Santa Marta ranges, with maximum elevations > 5km. The triangular Maracaibo block, bounded by the Santa Marta-Bucaramanga, Bocono and Oca-Ancon Faults, is currently escaping to the north relative to SA over both the subducting and nonsubducting elements of the CAR plate.</p><p>Although many petroleum related seismic studies have been done in this area, the details of the subduction geometry of the CAR plate beneath the Maracaibo block remain unclear. The few deeper seismic investigations are either very large scale, very local, or only peripheral to this area. Previous geodetic studies have suggested that this region has potential for a great (M~8+) earthquake (Bilham and Mencin, 2013). To investigate this complex region we fielded a 65 element broadband seismic array to complement the 48 existing stations of the Colombian and Venezuelan national seismic networks. The array is collectively referred to as the CARMArray.</p><p>In this study, we jointly inverted ambient noise Rayleigh wave Z/H ratios, phase velocities in the 8-30s band and ballistic Rayleigh wave phase velocities in 30-80s band to construct a 3D S-wave velocity model in the area from 75<sup>o</sup>-65<sup>o</sup> west and 5<sup>o</sup>-12<sup>o</sup> north. Rayleigh wave Z/H ratios are sensitive to the shallow sedimentary structure, while the phase velocity data have good resolution of the crust and upper mantle. The Vs model shows strong low-velocity anomalies beneath the Barinas-Apure and Maracaibo Basins, and the Paraguana Peninsula that are well correlated with surface geology. Sediment thickness beneath the Maracaibo basin reaches up to ~9 km depth, consistent with previous studies (Kellogg & Bonini, 1982). Crustal thickness beneath the Santa Marta uplift is 27-30 km, shallow for its nearly 4km elevation. From the trench to the southeast, Moho depth increases from 25-30 km near the coast to 40-45 km beneath the Maracaibo Basin, with the thickest crust, ~50 km, lying under the Merida Andes beneath the Bocono Fault. Crustal thickness decreases under the Venezeulan interior to ~45 km. From 50km to 150km depth, the CAR plate shows ~2% high Vs anomalies beneath the Santa Marta uplift and the Serrania de Perija range. Our slab image matches local slab seismicity very well (Cornthwaite et al., EGU 2021 GD7.1), and is consistent with and complements images from teleseismic P-wave tomography (Cornthwaite et al, 2021, submitted).</p>


Sign in / Sign up

Export Citation Format

Share Document